Pharmacy Council of India New Delhi

Rules & Syllabus for the Bachelor of Pharmacy (B. Pharm) Course

[Framed under Regulation 6, 7 & 8 of the Bachelor of Pharmacy (B. Pharm) course regulations 2014]

CHAPTER-I: REGULATIONS

1. Short Title and Commencement

These regulations shall be called as "The Revised Regulations for the B. Pharm. Degree Program (CBCS)of the Pharmacy Council of India, New Delhi". They shall come into effect from the Academic Year 2016-17. The regulations framed are subject to modifications from time to time by Pharmacy Council of India.

2. Minimum qualification for admission

2.1 First year B. Pharm:

Candidate shall have passed 10+2 examination conducted by the respective state/central government authorities recognized as equivalent to 10+2 examination by the Association of Indian Universities (AIU) with English as one of the subjects and Physics, Chemistry, Mathematics (P.C.M) and or Biology (P.C.B / P.C.M.B.) as optional subjects individually. Any other qualification approved by the Pharmacy Council of India as equivalent to any of the above examinations.

2.2. B. Pharm lateral entry (to third semester):

A pass in D. Pharm. course from an institution approved by the Pharmacy Council of India under section 12 of the Pharmacy Act.

3. Duration of the program

The course of study for B.Pharm shall extend over a period of eight semesters (four academic years) and six semesters (three academic years) for lateral entry students. The curricula and syllabi for the program shall be prescribed from time to time by Pharmacy Council of India, New Delhi.

4. Medium of instruction and examinations

Medium of instruction and examination shall be in English.

5. Working days in each semester

Each semestershall consist of not less than 100 working days. The odd semesters shall be conducted from the month of June/July to November/December and the even semesters shall be conducted from December/January to May/June in every calendar year.

6. Attendance and progress

A candidate is required to put in at least 80% attendance in individual courses considering theory and practical separately. The candidate shall complete the prescribed course satisfactorily to be eligible to appear for the respective examinations.

7. Program/Course credit structure

As per the philosophy of Credit Based Semester System, certain quantum of academic work viz. theory classes, tutorial hours, practical classes, etc. are measured in terms of credits. On satisfactory completion of the courses, a candidate earns credits. The amount of credit associated with a course is dependent upon the number of hours of instruction per week in that course. Similarly, the credit associated with any of the other academic, co/extra-curricular activities is dependent upon the quantum of work expected to be put in for each of these activities per week.

7.1. Credit assignment

7.1.1. Theory and Laboratory courses

Courses are broadly classified as Theory and Practical. Theory courses consist of lecture (L) and /or tutorial (T) hours, and Practical (P) courses consist of hours spent in the laboratory. Credits (C) for a course is dependent on the number of hours of instruction per week in that course, and is obtained by using a multiplier of one (1) for lecture and tutorial hours, and a multiplier of half (1/2) for practical (laboratory) hours. Thus, for example, a theory course having three lectures and one tutorial per week throughout the semester carries a credit of 4. Similarly, a practical having four laboratory hours per week throughout semester carries a credit of 2.

7.2. Minimum credit requirements

The minimum credit points required for award of a B. Pharm. degree is 208. These credits are divided into Theory courses, Tutorials, Practical, Practice School and Projectover the duration of eight semesters. The credits are distributed semester-wise as shown in Table IX. Courses generally progress in sequences, building competencies and their positioning indicates certain academic maturity on the part of the learners. Learners are expected to follow the semester-wise schedule of courses given in the syllabus.

The lateral entry students shall get 52 credit points transferred from their D. Pharm program. Such students shall take up additional remedial courses of 'Communication Skills' (Theory and Practical) and 'Computer Applications in Pharmacy' (Theory and Practical) equivalent to 3 and 4 credit points respectively, a total of 7 credit points to attain 59 credit points, the maximum of I and II semesters.

8. Academic work

A regular record of attendance both in Theory and Practical shall be maintained by the teaching staff of respective courses.

9. Course of study

The course of study for B. Pharm shall include Semester Wise Theory & Practical as given in Table – I to VIII. The number of hours to be devoted to each theory, tutorial and practical course in any semester shall not be less than that shown in Table – I to VIII.

Table-I: Course of study for semester I

Course code	Name of the course	No. of hours	Tuto rial	Credit points
BP101T	Human Anatomy and Physiology I— Theory	3	1	4
BP102T	Pharmaceutical Analysis I – Theory	3	1	4
BP103T	Pharmaceutics I – Theory	3	1	4
BP104T	Pharmaceutical Inorganic Chemistry – Theory	3	1	4
BP105T	Communication skills – Theory *	2	-	2
BP106RBT BP106RMT	Remedial Biology/ Remedial Mathematics – Theory*	2	-	2
BP107P	Human Anatomy and Physiology – Practical	4	-	2
BP108P	Pharmaceutical Analysis I – Practical	4	-	2
BP109P	Pharmaceutics I – Practical	4	-	2
BP110P	Pharmaceutical Inorganic Chemistry – Practical	4	-	2
BP111P	Communication skills – Practical*	2	-	1
BP112RBP	Remedial Biology – Practical*	2	-	1
#	Total	32/34 ^{\$} /36 [#]	4	27/29 ^{\$} /30 [#]

^{*}Applicable ONLY for the students who have studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology (RB)course.

^{\$}Applicable ONLY for the students who have studied Physics / Chemistry / Botany / Zoology at HSC and appearing for Remedial Mathematics (RM)course.

^{*} Non University Examination (NUE)

Table-II: Course of study for semester II

Course Code	Name of the course	No. of hours	Tutorial	Credit points
BP201T	Human Anatomy and Physiology II – Theory	3	1	4
BP202T	Pharmaceutical Organic Chemistry I – Theory	3	1	4
BP203T	Biochemistry – Theory	3	1	4
BP204T	Pathophysiology – Theory	3	1	4
BP205T	Computer Applications in Pharmacy – Theory *	3	-	3
BP206T	Environmental sciences – Theory *	3	-	3
BP207P	Human Anatomy and Physiology II –Practical	4	-	2
BP208P	Pharmaceutical Organic Chemistry I– Practical	4	-	2
BP209P	Biochemistry – Practical	4	-	2
BP210P	Computer Applications in Pharmacy – Practical*	2	-	1
	Total	32	4	29

^{*}Non University Examination (NUE)

Table-III: Course of study for semester III

Course code	Name of the course	No. of hours	Tutorial	Credit points
BP301T	Pharmaceutical Organic Chemistry II – Theory	3	1	4
BP302T	Physical Pharmaceutics I – Theory	3	1	4
BP303T	Pharmaceutical Microbiology – Theory	3	1	4
BP304T	Pharmaceutical Engineering – Theory	3	1	4
BP305P	Pharmaceutical Organic Chemistry II – Practical	4	-	2
BP306P	Physical Pharmaceutics I – Practical	4	-	2
BP307P	Pharmaceutical Microbiology – Practical	4	-	2
BP 308P	Pharmaceutical Engineering –Practical	4	-	2
	Total	28	4	24

 $\label{thm:course} \textbf{Table-IV: Course of study for semester IV}$

Course code	Name of the course	No. of hours	Tutorial	Credit points
BP401T	Pharmaceutical Organic Chemistry III– Theory	3	1	4
BP402T	Medicinal Chemistry I – Theory	3	1	4
BP403T	Physical Pharmaceutics II – Theory	3	1	4
BP404T	Pharmacology I – Theory	3	1	4
BP405T	Pharmacognosy and Phytochemistry I– Theory	3	1	4
BP406P	Medicinal Chemistry I – Practical	4	-	2
BP407P	Physical Pharmaceutics II – Practical	4		2
BP408P	Pharmacology I – Practical	4	-	2
BP409P	Pharmacognosy and Phytochemistry I – Practical	4	-	2
	Total	31	5	28

Table-V: Course of study for semester \boldsymbol{V}

Course code	Name of the course	No. of hours	Tutorial	Credit points
BP501T	Medicinal Chemistry II – Theory	3	1	4
BP502T	Industrial Pharmacyl– Theory	3	1	4
BP503T	Pharmacology II – Theory	3	1	4
BP504T	Pharmacognosy and Phytochemistry II– Theory	3	1	4
BP505T	Pharmaceutical Jurisprudence – Theory	3	1	4
BP506P	Industrial PharmacyI – Practical	4	-	2
BP507P	Pharmacology II – Practical	4	-	2
BP508P	Pharmacognosy and Phytochemistry II –	4	-	2
	Practical			
	Total	27	5	26

 $\label{thm:course} \textbf{Table-VI: Course of study for semester VI}$

Course code	Name of the course	No. of hours	Tutorial	Credit points
BP601T	Medicinal Chemistry III – Theory	3	1	4
BP602T	Pharmacology III – Theory	3	1	4
BP603T	Herbal Drug Technology – Theory	3	1	4
BP604T	Biopharmaceutics and Pharmacokinetics – Theory	3	1	4
BP605T	Pharmaceutical Biotechnology - Theory	3	1	4
BP606T	Quality Assurance –Theory	3	1	4
BP607P	Medicinal chemistry III – Practical	4	-	2
BP608P	Pharmacology III – Practical	4	-	2
BP609P	Herbal Drug Technology – Practical	4	-	2
	Total	30	6	30

Table-VII: Course of study for semester VII

Course code	Name of the course	No. of hours	Tutorial	Credit points
BP701T	Instrumental Methods of Analysis – Theory	3	1	4
BP702T	Industrial PharmacyII – Theory	3	1	4
BP703T	Pharmacy Practice – Theory	3	1	4
BP704T	Novel Drug Delivery System – Theory	3	1	4
BP705P	Instrumental Methods of Analysis – Practical	4	-	2
BP706PS	Practice School*	12	-	6
	Total	28	5	24

^{*} Non University Examination (NUE)

Table-VIII: Course of study for semester VIII

Course code	Name of the course	No. of hours	Tutorial	Credit points
BP801T	Biostatistics and Research Methodology	3	1	4
BP802T	Social and Preventive Pharmacy	3	1	4
BP803ET	Pharma Marketing Management			
BP804ET	Pharmaceutical Regulatory Science			
BP805ET	Pharmacovigilance		1 + 1 = 2	
BP806ET	Quality Control and Standardization of Herbals	3 + 3 =		4 + 4 =
BP807ET	Computer Aided Drug Design	6		8
BP808ET	Cell and Molecular Biology			
BP809ET	Cosmetic Science			
BP810ET	Experimental Pharmacology			
BP811ET	Advanced Instrumentation Techniques			
BP812ET	Dietary Supplements and Nutraceuticals			
BP813PW	Project Work	12	-	6
	Total	24	4	22

Table-IX: Semester wise credits distribution

Semester	Credit Points
I	27/29 ^{\$} /30 [#]
II	29
III	26
IV	28
V	26
VI	26
VII	24
VIII	22
Extracurricular/ Co curricular activities	01*
Total credit points for the program	209/211\$/212#

^{*} The credit points assigned for extracurricular and or co-curricular activities shall be given by the Principals of the colleges and the same shall be submitted to the University. The criteria to acquire this credit point shall be defined by the colleges from time to time.

^{\$}Applicable ONLY for the students studied Physics / Chemistry / Botany / Zoology at HSC and appearing for Remedial Mathematics course.

[#]Applicable ONLY for the students studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology course.

10. Program Committee

- 1. The B. Pharm. program shall have a Program Committee constituted by the Head of the institution in consultation with all the Heads of the departments.
- 2. The composition of the Program Committee shall be as follows:

A senior teacher shall be the Chairperson; One Teacher from each department handling B.Pharm courses; and four student representatives of the program (one from each academic year), nominated by the Head of the institution.

3. Duties of the Program Committee:

- i. Periodically reviewing the progress of the classes.
- ii. Discussing the problems concerning curriculum, syllabus and the conduct of classes.
- iii. Discussing with the course teachers on the nature and scope of assessment for the course and the same shall be announced to the students at the beginning of respective semesters.
- iv. Communicating its recommendation to the Head of the institution on academic matters.
- v. The Program Committee shall meet at least thrice in a semester preferably at the end of each Sessionalexam (Internal Assessment) and before the end semester exam.

11. Examinations/Assessments

The scheme for internal assessment and end semester examinations is given in Table -X.

11.1. End semester examinations

The End Semester Examinations for each theory and practical coursethrough semesters I to VIII shall beconducted by the university except for the subjects with asterix symbol (*) in table I and II for which examinations shall be conducted by the subject experts at college level and the marks/grades shall be submitted to the university.

Tables-X: Schemes for internal assessments and end semester examinations semester wise

Semester I

Course	Internal Assessment					End Semes	Total	
code	Name of the course	Continuous Sessional Exams		Exams	xams Total		Duration	Marks
-		Mode	Marks	Duration	Total	Marks	Duration	1,141111
BP101T	Human Anatomy and Physiology I– Theory	10	15	1 Hr	25	75	3 Hrs	100
BP102T	Pharmaceutical Analysis I – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP103T	Pharmaceutics I – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP104T	Pharmaceutical Inorganic Chemistry – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP105T	Communication skills – Theory *	5	10	1 Hr	15	35	1.5 Hrs	50
BP106RBT BP106RMT	Remedial Biology/ Mathematics – Theory*	5	10	1 Hr	15	35	1.5 Hrs	50
BP107P	Human Anatomy and Physiology – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP108P	Pharmaceutical Analysis I – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP109P	Pharmaceutics I – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP110P	Pharmaceutical Inorganic Chemistry – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP111P	Communication skills – Practical*	5	5	2 Hrs	10	15	2 Hrs	25
BP112RBP	Remedial Biology – Practical*	5	5	2 Hrs	10	15	2 Hrs	25
	Total	70/75\$/80#	115/125\$/130#	23/24 ^{\$} /26 [#] Hrs	185/200 ^{\$} /210 [#]	490/525 ^{\$} / 540 [#]	31.5/33 ^{\$} / 35 [#] Hrs	675/725 ^{\$} / 750 [#]

^{*}Applicable ONLY for the students studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology (RB)course.

 $^{\$} Applicable \ ONLY \ for \ the \ students \ studied \ Physics \ / \ Chemistry \ / \ Botany \ / \ Zoology \ at \ HSC \ and \ appearing \ for \ Remedial \ Mathematics \ (RM) course.$

^{*} Non University Examination (NUE)

Semester II

Course		Internal Assessment				End Seme	Total	
code	Name of the course	Continuous Sessional Exams		Total	Marks	Duration	Marks	
couc		Mode	Marks	Duration	Total	Marks	Duration	IVIAI IXS
BP201T	Human Anatomy and Physiology II – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP202T	Pharmaceutical Organic Chemistry I – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP203T	Biochemistry – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP204T	Pathophysiology – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP205T	Computer Applications in Pharmacy – Theory*	10	15	1 Hr	25	50	2 Hrs	75
BP206T	Environmental sciences – Theory*	10	15	1 Hr	25	50	2 Hrs	75
BP207P	Human Anatomy and Physiology II –Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP208P	Pharmaceutical Organic Chemistry I– Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP209P	Biochemistry – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP210P	Computer Applications in Pharmacy – Practical*	5	5	2 Hrs	10	15	2 Hrs	25
	Total	80	125	20 Hrs	205	520	30 Hrs	725

^{*} The subject experts at college level shall conduct examinations

Semester III

Course		Internal Assessment				End Seme	Total	
code	Name of the course	Continuous	Session	al Exams	Total	Marks	Duration	Marks
couc		Mode	Marks	Duration	Total	Walks	Duration	17141115
BP301T	Pharmaceutical Organic Chemistry II – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP302T	PhysicalPharmaceuticsI – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP303T	Pharmaceutical Microbiology – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP304T	Pharmaceutical Engineering – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP305P	Pharmaceutical Organic Chemistry II – Practical	5	10	4 Hr	15	35	4 Hrs	50
BP306P	Physical Pharmaceutics I – Practical	5	10	4 Hr	15	35	4 Hrs	50
BP307P	Pharmaceutical Microbiology – Practical	5	10	4 Hr	15	35	4 Hrs	50
BP308P	Pharmaceutical Engineering – Practical	5	10	4 Hr	15	35	4 Hrs	50
	Total	60	100	20	160	440	28Hrs	600

Semester IV

Course		Internal Assessment				End Seme	Total	
code	Name of the course	Continuous	Session	al Exams	Total	Marks	Duration	Marks
Couc		Mode	Marks	Duration	1 Otal	Marks	Duration	Wai Ks
BP401T	Pharmaceutical Organic	10	15	1 Hr	25	75	3 Hrs	100
DI 4011	Chemistry III– Theory	10	13	1 111	23	13	з пів	100
BP402T	Medicinal Chemistry I – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP403T	Physical Pharmaceutics II –	10	15	1 Hr	25	75	3 Hrs	100
DD 40 4F	Theory	10	1.5	1.77	25	7.5	2.11	100
BP404T	Pharmacology I – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP405T	Pharmacognosy I – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP406P	Medicinal Chemistry I – Practical	5	10	4 Hr	15	35	4 Hrs	50
BP407P	Physical Pharmaceutics II – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP408P	Pharmacology I – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP409P	Pharmacognosy I – Practical	5	10	4 Hrs	15	35	4 Hrs	50
	Total	70	115	21 Hrs	185	515	31 Hrs	700

Semester V

Course			Internal Assessment			End Semester Exams		Total
code	Name of the course	Continuous	Session	al Exams	Total	Marks	Duration	Marks
couc		Mode	Marks	Duration	Total	Wai KS	Duration	TVIGITES
BP501T	Medicinal Chemistry II – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP502T	Industrial PharmacyI– Theory	10	15	1 Hr	25	75	3 Hrs	100
BP503T	Pharmacology II – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP504T	Pharmacognosy II – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP505T	Pharmaceutical Jurisprudence –	10	15	1 Hr	25	75	3 Hrs	100
DF3031	Theory	10	13	1 111	23	13	3 1118	100
BP506P	Industrial PharmacyI– Practical	5	10	4 Hr	15	35	4 Hrs	50
BP507P	Pharmacology II – Practical	5	10	4 Hr	15	35	4 Hrs	50
BP508P	Pharmacognosy II – Practical	5	10	4 Hr	15	35	4 Hrs	50
	Total	65	105	17 Hr	170	480	27 Hrs	650

Semester VI

Course		Internal Assessment				End Semester Exams		Total
code	Name of the course	Continuous	Session	al Exams	Total	Marks	Duration	Marks
Code		Mode	Marks	Duration	1 Otal	Walks	Duration	17141113
BP601T	Medicinal Chemistry III – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP602T	Pharmacology III – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP603T	Herbal Drug Technology – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP604T	Biopharmaceutics and Pharmacokinetics – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP605T	Pharmaceutical Biotechnology— Theory	10	15	1 Hr	25	75	3 Hrs	100
BP606T	Quality Assurance– Theory	10	15	1 Hr	25	75	3 Hrs	100
BP607P	Medicinal chemistry III – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP608P	Pharmacology III – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP609P	Herbal Drug Technology – Practical	5	10	4 Hrs	15	35	4 Hrs	50
	Total	75	120	18 Hrs	195	555	30 Hrs	750

Semester VII

Course Name of the course		Internal Assessment				End Semester Exams		
code	Name of the course	Continuous	ontinuous Sessional Exams		Total	Marks	Duration	Marks
		Mode	Marks	Duration	Total	Marks	Duration	
BP701T	Instrumental Methods of Analysis – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP702T	Industrial Pharmacy – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP703T	Pharmacy Practice – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP704T	Novel Drug Delivery System – Theory	10	15	1 Hr	25	75	3 Hrs	100
BP705 P	Instrumental Methods of Analysis – Practical	5	10	4 Hrs	15	35	4 Hrs	50
BP706 PS	Practice School*	25	-	-	25	125	5 Hrs	150
	Total	70	70	8Hrs	140	460	21 Hrs	600

^{*} The subject experts at college level shall conduct examinations

Semester VIII

Course		Internal Assessment			End Seme	Total				
code	Name of the course	Continuous	Sessiona	Sessional Exams		Marks	Duration	Marks		
couc		Mode	Marks	Duration	Total	Marks	Duration	Maiks		
BP801T	Biostatistics and Research Methodology – Theory	10	15	1 Hr	25	75	3 Hrs	100		
BP802T	Social and Preventive Pharmacy – Theory	10	15	1 Hr	25	75	3 Hrs	100		
BP803ET	Pharmaceutical Marketing – Theory									
BP804ET	Pharmaceutical Regulatory Science – Theory									
BP805ET	Pharmacovigilance – Theory									
BP806ET	Quality Control and Standardization of Herbals – Theory				15 + 15 =	1 + 1 =	25 + 25 =	75 + 75	3+3=6	100 +
BP807ET	Computer Aided Drug Design – Theory		30	2 Hrs	50	= 150	Hrs	100 = 200		
BP808ET	Cell and Molecular Biology – Theory									
BP809ET	Cosmetic Science – Theory									
BP810ET	Experimental Pharmacology – Theory									
BP811ET	Advanced Instrumentation Techniques – Theory									
BP812PW	Project Work	-	-	-	-	150	4 Hrs	150		

Total	40	60	4 Hrs	100	450	16 Hrs	550

11.2. Internal assessment: Continuous mode

The marks allocated for Continuous mode of Internal Assessment shall be awarded as per the scheme given below.

Table-XI:Scheme for awarding internal assessment: Continuous mode

Theory					
Criteria		Maximum Marks			
Attendance (Refer Table – XII)	4	2			
Academic activities (Average of any 3 activities e.g. quiz, assignment, open book test, field work, group discussion and seminar)	3	1.5			
Student – Teacher interaction	3	1.5			
Total	10	5			
Practical					
Attendance (Refer Table – XII)	2				
Based on Practical Records, Regular viva voce, etc.					
Total					

Table- XII: Guidelines for the allotment of marks for attendance

Percentage of Attendance	Theory	Practical
95 – 100	4	2
90 – 94	3	1.5
85 – 89	2	1
80 – 84	1	0.5
Less than 80	0	0

11.2.1. Sessional Exams

Two Sessional exams shall be conducted for each theory / practical course as per the schedule fixed by the college(s). The scheme of question paper for theory and practical Sessional examinations is given below. The average marks of two Sessional exams shall be computed for internal assessment as per the requirements given in tables -X.

Sessional exam shall be conducted for 30 marks for theory and shall be computed for 15 marks. Similarly Sessional exam for practical shall be conducted for 40 marks and shall be computed for 10 marks.

Question paper pattern for theory Sessional examinations

For subjects having University examination

I. Multiple Choice Questions (MCQs)	=	$10 \times 1 = 10$
OR		OR
Objective Type Questions (5 x 2)	=	$05 \times 2 = 10$
(Answer all the questions)		
I. Long Answers (Answer 1 out of 2)	=	$1 \times 10 = 10$
II. Short Answers (Answer 2 out of 3)	=	$2 \times 5 = 10$
	Total =	30 marks

For subjects having Non University Examination

I. Long Answers (Answer 1 out of 2) $= 1 \times 10 = 10$ II. Short Answers (Answer 4 out of 6) $= 4 \times 5 = 20$

Total = 30 marks

.....

Question paper pattern for practical sessional examinations

I. Synopsis = 10
II. Experiments = 25
III. Viva voce = 05

Total = 40 marks

12. Promotion and award of grades

A student shall be declared PASSand eligible for getting gradein a course of B.Pharm.program if he/she secures at least 50% marks in that particular course including internal assessment. For example, to be declared as PASS and to get grade, the student has to secure a minimum of 50 marks for the total of 100 including continuous mode of assessment and end semester theory examination and has to secure a minimum of 25 marks for the total 50 including internal assessment and end semester practical examination.

13. Carry forward of marks

In case a studentfails to secure the minimum 50% in any Theory or Practical course as specified in 12,then he/she shall reappear for the end semester examination of that course. However his/her marks of the Internal Assessmentshallbe carried overand he/she shall be entitled for grade obtained by him/her on passing.

14. Improvement of internal assessment

A studentshall have the opportunity to improvehis/her performance only oncein the Sessional exam component of the internal assessment. The re-conduct of the Sessional exam shall be completed before the commencement of next end semester theory examinations.

15. Re-examination of end semester examinations

Reexamination ofend semester examinationshall be conducted as per the schedule given in table XIII. The exact dates of examinations shall be notified from time to time.

Table-XIII: Tentative schedule of end semester examinations

Semester	For Regular Candidates	For Failed Candidates
I, III, V and VII	November / December	May / June
II, IV, VI and VIII	May / June	November / December

Question paper pattern for end semester theory examinations

For 75 marks paper

I. Multiple Choice Questions(MCQs) = 20 x 1 = 20 OR

Objective Type Questions (10 x 2) = 10 x 2 = 20

(Answer all the questions)

II. Long Answers (Answer 2 out of 3) $= 2 \times 10 = 20$

III. Short Answers (Answer 7 out of 9) $= 7 \times 5 = 35$

Total = 75 marks

For 50 marks paper

I. Long Answers (Answer 2 out of 3) $= 2 \times 10 = 20$

II. Short Answers (Answer 6 out of 8) $= 6 \times 5 = 30$

Total = 50 marks

For 35 marks paper

I. Long Answers (Answer 1 out of 2) $= 1 \times 10 = 10$

II. Short Answers (Answer 5 out of 7) $= 5 \times 5 = 25$

Total = 35 marks

Question paper pattern for end semester practical examinations

I. Synopsis = 5

II. Experiments = 25

III. Viva voce = 5

Total — 25 marks

Total = 35 marks

16. Academic Progression:

No student shall be admitted to any examination unless he/she fulfills the norms given in 6. Academic progression rules are applicable as follows:

A student shall be eligible to carry forward all the courses of I, II and III semesters till the IV semester examinations. However, he/she shall not be eligible to attend the courses of V semester until all the courses of I and II semesters are successfully completed.

A student shall be eligible to carry forward all the courses of III, IV and V semesters till the VI semester examinations. However, he/she shall not be eligible to attend the courses of VII semester until all the courses of I, II, III and IV semesters are successfully completed.

A student shall be eligible to carry forward all the courses of V, VI and VII semesters till the VIII semester examinations. However, he/she shall not be eligible to get the course completion certificate until all the courses of I, II, III, IV, V and VI semesters are successfully completed.

A student shall be eligible to get his/her CGPA upon successful completion of the courses of I to VIII semesters within the stipulated time period as per the norms specified in 26.

A lateral entry student shall be eligible to carry forward all the courses of III, IV and V semesters till the VI semester examinations. However, he/she shall not be eligible to attend the courses of VII semester until all the courses of III and IV semesters are successfully completed.

A lateral entry student shall be eligible to carry forward all the courses of V, VI and VII semesters till the VIII semester examinations. However, he/she shall not be eligible to get the course completion certificate until all the courses of III, IV, V and VI semesters are successfully completed.

A lateral entry student shall be eligible to get his/her CGPA upon successful completion of the courses of III to VIII semesters within the stipulated time period as per the norms specified in 26.

Any student who has given more than 4 chances for successful completion of I / III semester courses and more than 3 chances for successful completion of II / IV semester courses shall be permitted to attend V / VII semester classes ONLY during the subsequent academic year as the case may be. In simpler terms there shall NOT be any ODD BATCH for any semester.

Note: Grade ABshould be considered as failed and treated as one head for deciding academic progression. Such rules are also applicable for those students who fail to register for examination(s) of any course in any semester.

17. Grading of performances

17.1. Letter grades and grade points allocations:

Based on the performances, each student shall be awarded a final letter grade at the end of the semester for each course. The letter grades and their corresponding grade points are given in Table – XII.

Table – XII: Letter grades and grade points equivalent to Percentage of marks and performances

Percentage of Marks Obtained	Letter Grade	Grade Point	Performance
90.00 - 100	О	10	Outstanding
80.00 – 89.99	A	9	Excellent
70.00 – 79.99	В	8	Good
60.00 – 69.99	С	7	Fair
50.00 - 59.99	D	6	Average
Less than 50	F	0	Fail
Absent	AB	0	Fail

A learner who remains absent for any end semester examination shall be assigned a letter grade of ABand a corresponding grade point of zero. He/she should reappear for the said evaluation/examination in due course.

18. The Semester grade point average (SGPA)

The performance of a student in a semester is indicated by a number called 'Semester Grade Point Average' (SGPA). The SGPA is the weighted average of the grade points obtained all the courses by the student during the semester. For example, if a student takes five courses(Theory/Practical) in a semester with credits C1, C2, C3, C4 and C5 and the student's grade points these courses are G1, G2, G3, G4 and G5, respectively, and then students' SGPA is equal to:

$$SGPA = \begin{array}{c} C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4 + C_5G_5 \\ \cdots \\ C_1 + C_2 + C_3 + C_4 + C_5 \end{array}$$

The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester shall take into consideration the F and ABS grade awarded in that semester. For example if a learner has a F or ABS grade in course 4, the SGPA shall then be computed as:

$$C_1G_1 + C_2G_2 + C_3G_3 + C_4* ZERO + C_5G_5$$

 $SGPA = C_1 + C_2 + C_3 + C_4 + C_5$

19. Cumulative Grade Point Average (CGPA)

The CGPA is calculated with the SGPA of all the VIII semesters to two decimal points and is indicated in final grade report card/final transcript showing the grades of all VIII semesters and their courses. The CGPA shall reflect the failed statusin case of F grade(s),till the course(s) is/are passed. When the course(s)is/are passedby obtaining a pass grade on subsequent examination(s) the CGPA shall only reflect the new grade and not the fail grades earned earlier. The CGPA is calculated as:

$$C_{1}S_{1} + C_{2}S_{2} + C_{3}S_{3} + C_{4}S_{4} + C_{5}S_{5} + C_{6}S_{6} + C_{7}S_{7} + C_{8}S_{8}$$

$$CGPA = C_{1} + C_{2} + C_{3} + C_{4} + C_{5} + C_{6} + C_{7} + C_{8}$$

where C_1 , C_2 , C_3 ,... is the total number of credits for semester I,II,III,... and S_1 , S_2 , S_3 ,... is the SGPA of semester I,II,III.....

20. Declaration of class

The class shall be awarded on the basis of CGPA as follows:

First Class with Distinction = CGPA of. 7.50 and above First Class = CGPA of 6.00 to 7.49 Second Class = CGPA of 5.00 to 5.99

21. Project work

All the students shall undertake a projectunder the supervision of a teacher and submit a report. The area of the project shall directly relate any one of the elective subject opted by the student in semester VIII. The project shall be carried out in group not exceeding 5 in number. The project report shall be submitted in triplicate (typed & bound copy not less than 25 pages).

The internal and external examiner appointed by the University shall evaluate the project at the time of the Practical examinations of other semester(s). Students shall be evaluated in groups for four hours (i.e., about half an hour for a group of five students). The projects shall be evaluated as per the criteria given below.

Evaluation of Dissertation Book:

Total	75 Marks
Conclusions and Outcomes	20 Marks
Results and Discussions	20 Marks
Methodology adopted	20 Marks
Objective(s) of the work done	15 Marks

Evaluation of Presentation:

Presentation of work	25 Marks
Communication skills	20 Marks
Question and answer skills	30 Marks

Total 75 Marks

Explanation: The 75 marks assigned to the dissertation book shall be same for all the students in a group. However, the 75 marks assigned for presentation shall be awarded based on the performance of individual students in the given criteria.

22. Industrial training (Desirable)

Every candidate shall be required to work for at least 150 hours spread over four weeks in a Pharmaceutical Industry/Hospital. It includes Production unit, Quality Control department, Quality Assurance department, Analytical laboratory, Chemical manufacturing unit, Pharmaceutical R&D, Hospital (Clinical Pharmacy), Clinical Research Organization, Community Pharmacy, etc. After the Semester – VI and before the commencement of Semester – VII, and shall submit satisfactory report of such work and certificate duly signed by the authority of training organization to the head of the institute.

23. Practice School

In the VII semester, every candidate shall undergo practice school for a period of 150 hours evenly distributed throughout the semester. The student shall opt any one of the domains for practice school declared by the program committee from time to time.

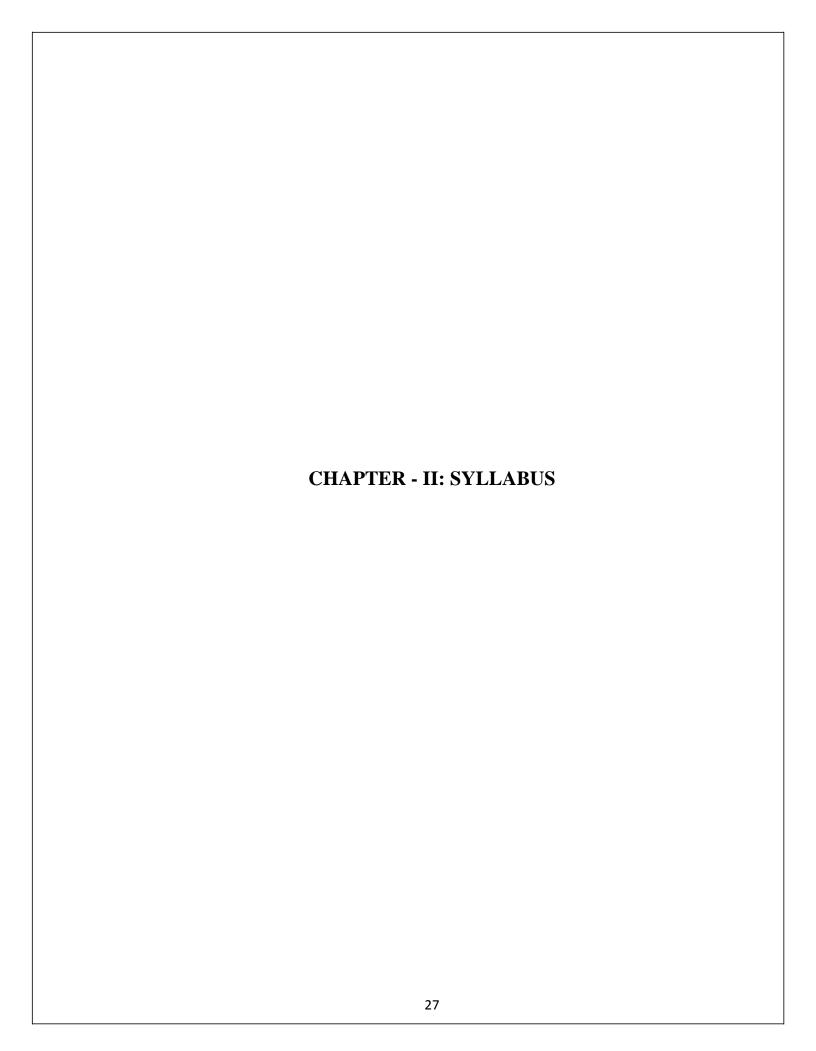
At the end of the practice school, every student shall submit a printed report (in triplicate) on the practice school he/she attended (not more than 25 pages). Along with the exams of semester VII, the report submitted by the student, knowledge and skills acquired by the student through practice school shall be evaluated by the subject experts at college leveland grade point shall be awarded.

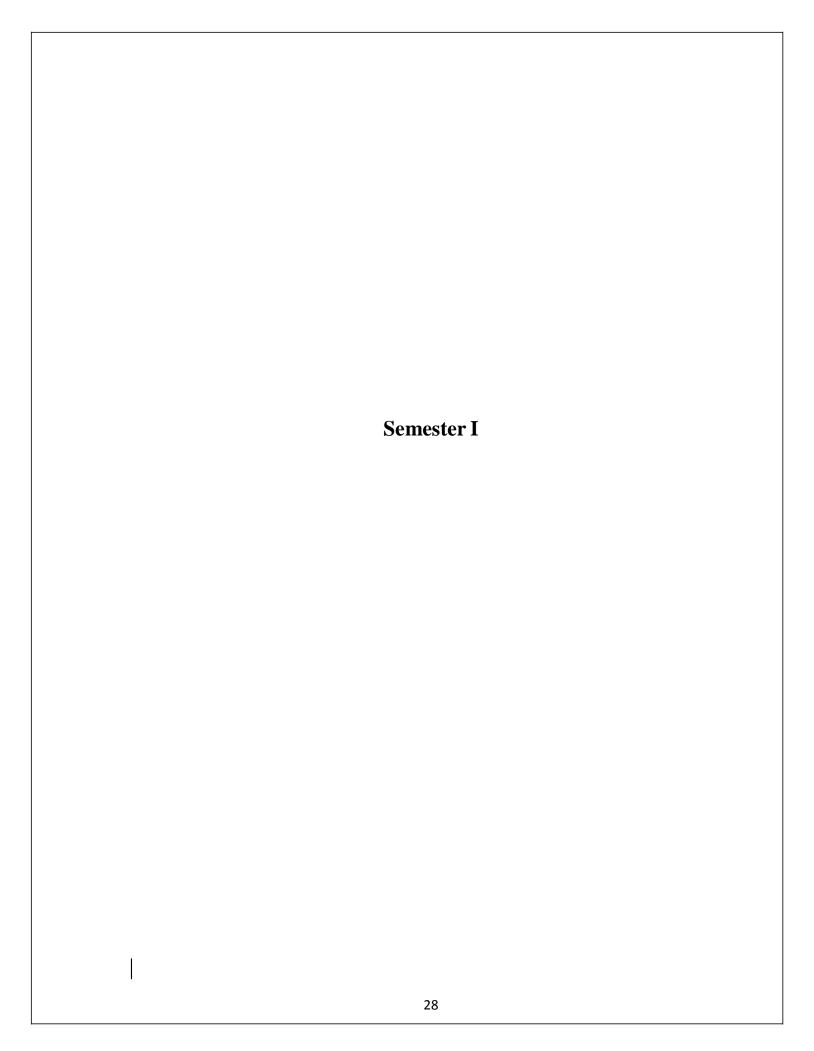
24. Award of Ranks

Ranks and Medals shall be awarded on the basis of final CGPA. However, candidates who fail in one or more courses during the B.Pharm program shall not be eligible for award of ranks.Moreover, the candidates should have completed the B. Pharm program in minimum prescribed number of years, (four years) for the award of Ranks.

25. Award of degree

Candidates who fulfill the requirements mentioned above shall be eligible for award of degree during the ensuing convocation.


26. Duration for completion of the program of study


The duration for the completion of the program shall be fixed as double the actual duration of the program and the students have to pass within the said period, otherwise they have to get fresh Registration.

27. Re-admission after break of study

Candidate who seeks re-admission to the program after break of study has to get the approval from the university by paying a condonation fee.

No condonation is allowed for the candidate who has more than 2 years of break up period and he/she has to rejoin the program by paying the required fees.

BP101T. HUMAN ANATOMY AND PHYSIOLOGY-I (Theory)

45 Hours

Scope: This subject is designed to impart fundamental knowledge on the structure and functions of the various systems of the human body. It also helps in understanding both homeostatic mechanisms. The subject provides the basic knowledge required to understand the various disciplines of pharmacy.

Objectives: Upon completion of this course the student should be able to

- 1. Explain the gross morphology, structure and functions of various organs of the human body.
- 2. Describe the various homeostatic mechanisms and their imbalances.
- 3. Identify the various tissues and organs of different systems of human body.
- 4. Perform the various experiments related to special senses and nervous system.
- 5. Appreciate coordinated working pattern of different organs of each system

Course Content:

Unit I 10 hours

• Introduction to human body

Definition and scope of anatomy and physiology, levels of structural organization and body systems, basic life processes, homeostasis, basic anatomical terminology.

• Cellular level of organization

Structure and functions of cell, transport across cell membrane, cell division, cell junctions. General principles of cell communication, intracellular signaling pathway activation by extracellular signal molecule, Forms of intracellular signaling: a) Contact-dependent b) Paracrine c) Synaptic d) Endocrine

Tissue level of organization

Classification of tissues, structure, location and functions of epithelial, muscular and nervous and connective tissues.

Unit II 10 hours

• Integumentary system

Structure and functions of skin

• Skeletal system

Divisions of skeletal system, types of bone, salient features and functions of bones of axial and appendicular skeletal system

Organization of skeletal muscle, physiology of muscle contraction, neuromuscular junction

• Joints

Structural and functional classification, types of joints movements and its articulation

Unit III 10 hours

Body fluids and blood

• Body fluids, composition and functions of blood, hemopoeisis, formation of hemoglobin, anemia, mechanisms of coagulation, blood grouping, Rh factors, transfusion, its significance and disorders of blood, Reticulo endothelial system.

• Lymphatic system

Lymphatic organs and tissues, lymphatic vessels, lymph circulation and functions of lymphatic system

Unit IV 08 hours

Peripheral nervous system:

Classification of peripheral nervous system: Structure and functions of sympathetic and parasympathetic nervous system.

Origin and functions of spinal and cranial nerves.

• Special senses

Structure and functions of eye, ear, nose and tongue and their disorders.

Unit V 07 hours

• Cardiovascular system

Heart – anatomy of heart, blood circulation, blood vessels, structure and functions of artery, vein and capillaries, elements of conduction system of heart and heart beat, its regulation by autonomic nervous system, cardiac output, cardiac cycle. Regulation of blood pressure, pulse, electrocardiogram and disorders of heart.

BP107P. HUMAN ANATOMY AND PHYSIOLOGY (Practical)

4 Hours/week

Practical physiology is complimentary to the theoretical discussions in physiology. Practicals allow the verification of physiological processes discussed in theory classes through experiments on living tissue, intact animals or normal human beings. This is helpful for developing an insight on the subject.

- 1. Study of compound microscope.
- 2. Microscopic study of epithelial and connective tissue
- 3. Microscopic study of muscular and nervous tissue
- 4. Identification of axial bones
- 5. Identification of appendicular bones
- 6. Introduction to hemocytometry.
- 7. Enumeration of white blood cell (WBC) count
- 8. Enumeration of total red blood corpuscles (RBC) count
- 9. Determination of bleeding time
- 10. Determination of clotting time
- 11. Estimation of hemoglobin content
- 12. Determination of blood group.
- 13. Determination of erythrocyte sedimentation rate (ESR).
- 14. Determination of heart rate and pulse rate.
- 15. Recording of blood pressure.

Recommended Books (Latest Editions)

- 1. Essentials of Medical Physiology by K. Sembulingam and P. Sembulingam. Jaypee brothers medical publishers, New Delhi.
- 2. Anatomy and Physiology in Health and Illness by Kathleen J.W. Wilson, Churchill Livingstone, New York
- 3. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co,Riverview,MIUSA
- 4. Text book of Medical Physiology- Arthur C,Guyton andJohn.E. Hall. Miamisburg, OH, U.S.A.
- 5. Principles of Anatomy and Physiology by Tortora Grabowski. Palmetto, GA, U.S.A.

- 6. Textbook of Human Histology by Inderbir Singh, Jaypee brother's medical publishers, New Delhi.
- 7. Textbook of Practical Physiology by C.L. Ghai, Jaypee brother's medical publishers, New Delhi.
- 8. Practical workbook of Human Physiology by K. Srinageswari and Rajeev Sharma, Jaypee brother's medical publishers, New Delhi.

Reference Books (Latest Editions)

- 1. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co, Riverview, MI USA
- 2. Text book of Medical Physiology- Arthur C, Guyton and John. E. Hall. Miamisburg, OH, U.S.A.
- 3. Human Physiology (vol 1 and 2) by Dr. C.C. Chatterrje ,Academic Publishers Kolkata

BP102T. PHARMACEUTICAL ANALYSIS (Theory)

45 Hours

Scope: This course deals with the fundamentals of analytical chemistry and principles of electrochemical analysis of drugs

Objectives: Upon completion of the course student shall be able to

- understand the principles of volumetric and electro chemical analysis
- carryout various volumetric and electrochemical titrations
- develop analytical skills

Course Content:

UNIT-I 10 Hours

- (a) Pharmaceutical analysis- Definition and scope
 - i) Different techniques of analysis
 - ii) Methods of expressing concentration
 - iii) Primary and secondary standards.
 - iv) Preparation and standardization of various molar and normal solutions-Oxalic acid, sodium hydroxide, hydrochloric acid, sodium thiosulphate, sulphuric acid, potassium permanganate and ceric ammonium sulphate
- **(b)Errors:** Sources of errors, types of errors, methods of minimizing errors, accuracy, precision and significant figures
- (c)Pharmacopoeia, Sources of impurities in medicinal agents, limit tests.

UNIT-II 10 Hours

- Acid base titration: Theories of acid base indicators, classification of acid base titrations and theory involved in titrations of strong, weak, and very weak acids and bases, neutralization curves
- Non aqueous titration: Solvents, acidimetry and alkalimetry titration and estimation of Sodium benzoate and Ephedrine HCl

UNIT-III 10 Hours

- **Precipitation titrations**: Mohr's method, Volhard's, Modified Volhard's, Fajans method, estimation of sodium chloride.
- Complexometric titration: Classification, metal ion indicators, masking and demasking reagents, estimation of Magnesium sulphate, and calcium gluconate.
- **Gravimetry**: Principle and steps involved in gravimetric analysis. Purity of the precipitate: co-precipitation and post precipitation, Estimation of barium sulphate.
- Basic Principles, methods and application of diazotisation titration.

UNIT-IV 08 Hours

Redox titrations

- (a) Concepts of oxidation and reduction
- (b) Types of redox titrations (Principles and applications)

Cerimetry, Iodimetry, Iodometry, Bromatometry, Dichrometry, Titration with potassium iodate

UNIT-V 07 Hours

- Electrochemical methods of analysis
 - **Conductometry** Introduction, Conductivity cell, Conductometric titrations, applications.
 - **Potentiometry** Electrochemical cell, construction and working of reference (Standard hydrogen, silver chloride electrode and calomel electrode) and indicator electrodes (metal electrodes and glass electrode), methods to determine end point of potentiometric titration and applications.
 - Polarography Principle, Ilkovic equation, construction and working of dropping mercury electrode and rotating platinum electrode, applications

BP108P. PHARMACEUTICAL ANALYSIS (Practical)

4 Hours / Week

I Limit Test of the following

- (1) Chloride
- (2) Sulphate
- (3) Iron
- (4) Arsenic

II Preparation and standardization of

- (1) Sodium hydroxide
- (2) Sulphuric acid
- (3) Sodium thiosulfate
- (4) Potassium permanganate
- (5) Ceric ammonium sulphate

III Assay of the following compounds along with Standardization of Titrant

- (1) Ammonium chloride by acid base titration
- (2) Ferrous sulphate by Cerimetry
- (3) Copper sulphate by Iodometry
- (4) Calcium gluconate by complexometry
- (5) Hydrogen peroxide by Permanganometry
- (6) Sodium benzoate by non-aqueous titration
- (7) Sodium Chloride by precipitation titration

IV Determination of Normality by electro-analytical methods

- (1) Conductometric titration of strong acid against strong base
- (2) Conductometric titration of strong acid and weak acid against strong base
- (3) Potentiometric titration of strong acid against strong base

Recommended Books: (Latest Editions)

- 1. A.H. Beckett & J.B. Stenlake's, Practical Pharmaceutical Chemistry Vol I & II, Stahlone Press of University of London
- 2. A.I. Vogel, Text Book of Quantitative Inorganic analysis
- 3. P. Gundu Rao, Inorganic Pharmaceutical Chemistry
- 4. Bentley and Driver's Textbook of Pharmaceutical Chemistry
- 5. John H. Kennedy, Analytical chemistry principles
- 6. Indian Pharmacopoeia.

BP103T. PHARMACEUTICS-I (Theory)

45 Hours

Scope: This course is designed to impart a fundamental knowledge on the preparatory pharmacy with arts and science of preparing the different conventional dosage forms.

Objectives: Upon completion of this course the student should be able to:

- Know the history of profession of pharmacy
- Understand the basics of different dosage forms, pharmaceutical incompatibilities and pharmaceutical calculations
- Understand the professional way of handling the prescription
- Preparation of various conventional dosage forms

Course Content:

UNIT – I 10 Hours

- **Historical background and development of profession of pharmacy**: History of profession of Pharmacy in India in relation to pharmacy education, industry and organization, Pharmacy as a career, Pharmacopoeias: Introduction to IP, BP, USP and Extra Pharmacopoeia.
- **Dosage forms:** Introduction to dosage forms, classification and definitions
- **Prescription:** Definition, Parts of prescription, handling of Prescription and Errors in prescription.
- **Posology:** Definition, Factors affecting posology. Pediatric dose calculations based on age, body weight and body surface area.

UNIT – II 10 Hours

- **Pharmaceutical calculations**: Weights and measures Imperial & Metric system, Calculations involving percentage solutions, alligation, proof spirit and isotonic solutions based on freezing point and molecular weight.
- **Powders:** Definition, classification, advantages and disadvantages, Simple & compound powders official preparations, dusting powders, effervescent, efflorescent and hygroscopic powders, eutectic mixtures. Geometric dilutions.
- **Liquid dosage forms:** Advantages and disadvantages of liquid dosage forms. Excipients used in formulation of liquid dosage forms. Solubility enhancement techniques

UNIT – III 08 Hours

 Monophasic liquids: Definitions and preparations of Gargles, Mouthwashes, Throat Paint, Eardrops, Nasal drops, Enemas, Syrups, Elixirs, Liniments and Lotions.

- Biphasic liquids:
- **Suspensions:** Definition, advantages and disadvantages, classifications, Preparation of suspensions; Flocculated and Deflocculated suspension & stability problems and methods to overcome.
- **Emulsions:** Definition, classification, emulsifying agent, test for the identification of type of Emulsion, Methods of preparation & stability problems and methods to overcome.

UNIT – IV 08 Hours

- **Suppositories**: Definition, types, advantages and disadvantages, types of bases, methods of preparations. Displacement value & its calculations, evaluation of suppositories.
- **Pharmaceutical incompatibilities**: Definition, classification, physical, chemical and therapeutic incompatibilities with examples.

UNIV – V 07 Hours

 Semisolid dosage forms: Definitions, classification, mechanisms and factors influencing dermal penetration of drugs. Preparation of ointments, pastes, creams and gels. Excipients used in semi solid dosage forms. Evaluation of semi solid dosages forms

BP109P. PHARMACEUTICSI (Practical)

3 Hours / week

1. Syrups

- a) Syrup IP'66
- b) Compound syrup of Ferrous Phosphate BPC'68

2. Elixirs

- a) Piperazine citrate elixir
- b) Paracetamol pediatric elixir

3.Linctus

- a) Terpin Hydrate Linctus IP'66
- b) Iodine Throat Paint (Mandles Paint)

4. Solutions

- a) Strong solution of ammonium acetate
- b) Cresol with soap solution
- c) Lugol's solution

5. Suspensions

- a) Calamine lotion
- b) Magnesium Hydroxide mixture
- c) Aluminimum Hydroxide gel

6. Emulsions a) Turpentine Liniment

b) Liquid paraffin emulsion

7. Powders and Granules

- a) ORS powder (WHO)
- b) Effervescent granules
- c)Dusting powder
- d)Divded powders

8. Suppositories

- a) Glycero gelatin suppository
- b) Coca butter suppository
- c) Zinc Oxide suppository

8. Semisolids

- a) Sulphur ointment
- b) Non staining-iodine ointment with methyl salicylate
- c) Carbopal gel

9. Gargles and Mouthwashes

- a) Iodine gargle
- b) Chlorhexidine mouthwash

Recommended Books: (Latest Editions)

- 1. H.C. Ansel et al., Pharmaceutical Dosage Form and Drug Delivery System, Lippincott Williams and Walkins, New Delhi.
- 2. Carter S.J., Cooper and Gunn's-Dispensing for Pharmaceutical Students, CBS publishers, New Delhi.
- 3. M.E. Aulton, Pharmaceutics, The Science& Dosage Form Design, Churchill Livingstone, Edinburgh.
- 4. Indian pharmacopoeia.
- 5. British pharmacopoeia.
- 6. Lachmann. Theory and Practice of Industrial Pharmacy, Lea& Febiger Publisher, The University of Michigan.
- 7. Alfonso R. Gennaro Remington. The Science and Practice of Pharmacy, Lippincott Williams, New Delhi.
- 8. Carter S.J., Cooper and Gunn's. Tutorial Pharmacy, CBS Publications, New Delhi.
- 9. E.A. Rawlins, Bentley's Text Book of Pharmaceutics, English Language Book Society, Elsevier Health Sciences, USA.
- 10. Isaac Ghebre Sellassie: Pharmaceutical Pelletization Technology, Marcel Dekker, INC, New York.
- 11. Dilip M. Parikh: Handbook of Pharmaceutical Granulation Technology, Marcel Dekker, INC, New York.
- 12. Francoise Nieloud and Gilberte Marti-Mestres: Pharmaceutical Emulsions and Suspensions, Marcel Dekker, INC, New York.

BP104T. PHARMACEUTICAL INORGANIC CHEMISTRY (Theory)

45 Hours

Scope: This subject deals with the monographs of inorganic drugs and pharmaceuticals.

Objectives: Upon completion of course student shall be able to

- know the sources of impurities and methods to determine the impurities in inorganic drugs and pharmaceuticals
- understand the medicinal and pharmaceutical importance of inorganic compounds

Course Content:

UNIT I 10 Hours

• Impurities in pharmaceutical substances: History of Pharmacopoeia, Sources and types of impurities, principle involved in the limit test for Chloride, Sulphate, Iron, Arsenic, Lead and Heavy metals, modified limit test for Chloride and Sulphate

General methods of preparation, assay for the compounds superscripted with **asterisk** (*), properties and medicinal uses of inorganic compounds belonging to the following classes

UNIT II 10 Hours

- Acids, Bases and Buffers: Buffer equations and buffer capacity in general, buffers in pharmaceutical systems, preparation, stability, buffered isotonic solutions, measurements of tonicity, calculations and methods of adjusting isotonicity.
- Major extra and intracellular electrolytes: Functions of major physiological ions, Electrolytes used in the replacement therapy: Sodium chloride*, Potassium chloride, Calcium gluconate* and Oral Rehydration Salt (ORS), Physiological acid base balance.
- **Dental products**: Dentifrices, role of fluoride in the treatment of dental caries, Desensitizing agents, Calcium carbonate, Sodium fluoride, and Zinc eugenol cement.

UNIT III 10 Hours

• Gastrointestinal agents

Acidifiers: Ammonium chloride* and Dil. HCl

Antacid: Ideal properties of antacids, combinations of antacids, Sodium

Bicarbonate*, Aluminum hydroxide gel, Magnesium hydroxide mixture

Cathartics: Magnesium sulphate, Sodium orthophosphate, Kaolin and Bentonite

Antimicrobials: Mechanism, classification, Potassium permanganate, Boric acid, Hydrogen peroxide*, Chlorinated lime*, Iodine and its preparations

UNIT IV 08 Hours

• Miscellaneous compounds

Expectorants: Potassium iodide, Ammonium chloride*.

Emetics: Copper sulphate*, Sodium potassium tartarate

Haematinics: Ferrous sulphate*, Ferrous gluconate

Poison and Antidote: Sodium thiosulphate*, Activated charcoal, Sodium

nitrite333

Astringents: Zinc Sulphate, Potash Alum

UNIT V 07 Hours

 Radiopharmaceuticals: Radio activity, Measurement of radioactivity, Properties of , , radiations, Half life, radio isotopes and study of radio isotopes - Sodium iodide I¹³¹, Storage conditions, precautions & pharmaceutical application of radioactive substances.

BP110P. PHARMACEUTICAL INORGANIC CHEMISTRY (Practical)

4 Hours / Week

I Limit tests for following ions

Limit test for Chlorides and Sulphates

Modified limit test for Chlorides and Sulphates

Limit test for Iron

Limit test for Heavy metals

Limit test for Lead

Limit test for Arsenic

II Identification test

Magnesium hydroxide

Ferrous sulphate

Sodium bicarbonate

Calcium gluconate

Copper sulphate

III Test for purity

Swelling power of Bentonite

Neutralizing capacity of aluminum hydroxide gel

Determination of potassium iodate and iodine in potassium Iodide

IV Preparation of inorganic pharmaceuticals

Boric acid

Potash alum

Ferrous sulphate

Recommended Books (Latest Editions)

- 1. A.H. Beckett & J.B. Stenlake's, Practical Pharmaceutical Chemistry Vol I & II, Stahlone Press of University of London, 4th edition.
- 2. A.I. Vogel, Text Book of Quantitative Inorganic analysis
- 3. P. Gundu Rao, Inorganic Pharmaceutical Chemistry, 3rd Edition
- 4. M.L Schroff, Inorganic Pharmaceutical Chemistry
- 5. Bentley and Driver's Textbook of Pharmaceutical Chemistry
- 6. Anand & Chatwal, Inorganic Pharmaceutical Chemistry
- 7. Indian Pharmacopoeia

BP105T.COMMUNICATION SKILLS (Theory)

30 Hours

Scope: This course will prepare the young pharmacy student to interact effectively with doctors, nurses, dentists, physiotherapists and other health workers. At the end of this course the student will get the soft skills set to work cohesively with the team as a team player and will add value to the pharmaceutical business.

Objectives:

Upon completion of the course the student shall be able to

- 1. Understand the behavioral needs for a Pharmacist to function effectively in the areas of pharmaceutical operation
- 2. Communicate effectively (Verbal and Non Verbal)
- 3. Effectively manage the team as a team player
- 4. Develop interview skills
- 5. Develop Leadership qualities and essentials

Course content:

UNIT – I 07 Hours

- Communication Skills: Introduction, Definition, The Importance of Communication, The Communication Process – Source, Message, Encoding, Channel, Decoding, Receiver, Feedback, Context
- Barriers to communication: Physiological Barriers, Physical Barriers, Cultural Barriers, Language Barriers, Gender Barriers, Interpersonal Barriers, Psychological Barriers, Emotional barriers
- **Perspectives in Communication:** Introduction, Visual Perception, Language, Other factors affecting our perspective Past Experiences, Prejudices, Feelings, Environment

UNIT – II 07 Hours

- **Elements of Communication:** Introduction, Face to Face Communication Tone of Voice, Body Language (Non-verbal communication), Verbal Communication, Physical Communication
- Communication Styles: Introduction, The Communication Styles Matrix with example for each -Direct Communication Style, Spirited Communication Style, Systematic Communication Style, Considerate Communication Style

UNIT – III 07 Hours

• Basic Listening Skills: Introduction, Self-Awareness, Active Listening, Becoming an Active Listener, Listening in Difficult Situations

- Effective Written Communication: Introduction, When and When Not to Use Written Communication Complexity of the Topic, Amount of Discussion' Required, Shades of Meaning, Formal Communication
- Writing Effectively: Subject Lines, Put the Main Point First, Know Your Audience, Organization of the Message

UNIT – IV 05 Hours

- Interview Skills: Purpose of an interview, Do's and Dont's of an interview
- **Giving Presentations:** Dealing with Fears, Planning your Presentation, Structuring Your Presentation, Delivering Your Presentation, Techniques of Delivery

UNIT – V 04 Hours

• **Group Discussion:** Introduction, Communication skills in group discussion, Do's and Dont's of group discussion

BP111P.COMMUNICATION SKILLS (Practical)

2 Hours / week

The following learning modules are to be conducted using wordsworth® English language lab software

Basic communication covering the following topics

Meeting People

Asking Questions

Making Friends

What did you do?

Do's and Dont's

Pronunciations covering the following topics

Pronunciation (Consonant Sounds)

Pronunciation and Nouns

Pronunciation (Vowel Sounds)

Advanced Learning

Listening Comprehension / Direct and Indirect Speech

Figures of Speech

Effective Communication

Writing Skills

Effective Writing

Interview Handling Skills

E-Mail etiquette

Presentation Skills

Recommended Books: (Latest Edition)

- 1. Basic communication skills for Technology, Andreja. J. Ruther Ford, 2nd Edition, Pearson Education, 2011
- 2. Communication skills, Sanjay Kumar, Pushpalata, 1stEdition, Oxford Press, 2011
- 3. Organizational Behaviour, Stephen .P. Robbins, 1stEdition, Pearson, 2013
- 4. Brilliant- Communication skills, Gill Hasson, 1stEdition, Pearson Life, 2011
- 5. The Ace of Soft Skills: Attitude, Communication and Etiquette for success, Gopala Swamy Ramesh, 5thEdition, Pearson, 2013
- 6. Developing your influencing skills, Deborah Dalley, Lois Burton, Margaret, Green hall, 1st Edition Universe of Learning LTD, 2010
- 7. Communication skills for professionals, Konar nira, 2ndEdition, New arrivals PHI, 2011
- 8. Personality development and soft skills, Barun K Mitra, 1stEdition, Oxford Press, 2011
- 9. Soft skill for everyone, Butter Field, 1st Edition, Cengage Learning india pvt.ltd, 2011
- 10. Soft skills and professional communication, Francis Peters SJ, 1stEdition, Mc Graw Hill Education, 2011
- 11. Effective communication, John Adair, 4thEdition, Pan Mac Millan, 2009
- 12. Bringing out the best in people, Aubrey Daniels, 2ndEdition, Mc Graw Hill, 1999

BP 106RBT.REMEDIAL BIOLOGY (Theory)

30 Hours

Scope: To learn and understand the components of living world, structure and functional system of plant and animal kingdom.

Objectives: Upon completion of the course, the student shall be able to

- know the classification and salient features of five kingdoms of life
- understand the basic components of anatomy & physiology of plant
- know understand the basic components of anatomy & physiology animal with special reference to human

UNIT I 07 Hours

Living world:

- Definition and characters of living organisms
- Diversity in the living world
- Binomial nomenclature
- Five kingdoms of life and basis of classification. Salient features of Monera, Potista, Fungi, Animalia and Plantae, Virus,

Morphology of Flowering plants

- Morphology of different parts of flowering plants Root, stem, inflorescence, flower, leaf, fruit, seed.
- General Anatomy of Root, stem, leaf of monocotyledons & Dicotylidones.

UNIT II 07 Hours

Body fluids and circulation

- Composition of blood, blood groups, coagulation of blood
- Composition and functions of lymph
- Human circulatory system
- Structure of human heart and blood vessels
- Cardiac cycle, cardiac output and ECG

Digestion and Absorption

- Human alimentary canal and digestive glands
- Role of digestive enzymes
- Digestion, absorption and assimilation of digested food

Breathing and respiration

- Human respiratory system
- Mechanism of breathing and its regulation
- Exchange of gases, transport of gases and regulation of respiration
- Respiratory volumes

UNIT III 07 Hours

Excretory products and their elimination

- Modes of excretion
- Human excretory system- structure and function
- Urine formation
- Rennin angiotensin system

Neural control and coordination

- Definition and classification of nervous system
- Structure of a neuron
- Generation and conduction of nerve impulse
- Structure of brain and spinal cord
- Functions of cerebrum, cerebellum, hypothalamus and medulla oblongata

Chemical coordination and regulation

- Endocrine glands and their secretions
- Functions of hormones secreted by endocrine glands

Human reproduction

- Parts of female reproductive system
- Parts of male reproductive system
- Spermatogenesis and Oogenesis
- Menstrual cycle

UNIT IV 05 Hours

Plants and mineral nutrition:

- Essential mineral, macro and micronutrients
- Nitrogen metabolism, Nitrogen cycle, biological nitrogen fixation

Photosynthesis

• Autotrophic nutrition, photosynthesis, Photosynthetic pigments, Factors affecting photosynthesis.

UNIT V 04 Hours

Plant respiration: Respiration, glycolysis, fermentation (anaerobic).

Plant growth and development

 Phases and rate of plant growth, Condition of growth, Introduction to plant growth regulators

Cell - The unit of life

• Structure and functions of cell and cell organelles. Cell division

Tissues

• Definition, types of tissues, location and functions.

Text Books

- a. Text book of Biology by S. B. Gokhale
- b. A Text book of Biology by Dr. Thulajappa and Dr. Seetaram.

Reference Books

- a. A Text book of Biology by B.V. Sreenivasa Naidu
- b. A Text book of Biology by Naidu and Murthy
- c. Botany for Degree students By A.C.Dutta.
- d.Outlines of Zoology by M. Ekambaranatha ayyer and T. N. Ananthakrishnan.
- e. A manual for pharmaceutical biology practical by S.B. Gokhale and C. K. Kokate

BP112RBP.REMEDIAL BIOLOGY (Practical)

30 Hours

- 1. Introduction to experiments in biology
 - a) Study of Microscope
 - b) Section cutting techniques
 - c) Mounting and staining
 - d) Permanent slide preparation
- 2. Study of cell and its inclusions
- 3. Study of Stem, Root, Leaf, seed, fruit, flower and their modifications
- 4. Detailed study of frog by using computer models
- 5. Microscopic study and identification of tissues pertinent to Stem, Root Leaf, seed, fruit and flower
- 6. Identification of bones
- 7. Determination of blood group
- 8. Determination of blood pressure
- 9. Determination of tidal volume

Reference Books

- 1. Practical human anatomy and physiology. by S.R.Kale and R.R.Kale.
- 2. A Manual of pharmaceutical biology practical by S.B.Gokhale, C.K.Kokate and S.P.Shriwastava.
- 3. Biology practical manual according to National core curriculum .Biology forum of Karnataka. Prof .M.J.H.Shafi

BP 106RMT.REMEDIAL MATHEMATICS (Theory)

30 Hours

Scope: This is an introductory course in mathematics. This subject deals with the introduction to Partial fraction, Logarithm, matrices and Determinant, Analytical geometry, Calculus, differential equation and Laplace transform.

Objectives:Upon completion of the course the student shall be able to:-

- 1. Know the theory and their application in Pharmacy
- 2. Solve the different types of problems by applying theory
- 3. Appreciate the important application of mathematics in Pharmacy

Course Content:

UNIT – I 06 Hours

• Partial fraction

Introduction, Polynomial, Rational fractions, Proper and Improper fractions, Partial fraction, Resolving into Partial fraction, Application of Partial Fraction in Chemical Kinetics and Pharmacokinetics

• Logarithms

Introduction, Definition, Theorems/Properties of logarithms, Common logarithms, Characteristic and Mantissa, worked examples, application of logarithm to solve pharmaceutical problems.

• Function:

Real Valued function, Classification of real valued functions,

• Limits and continuity :

Introduction, Limit of a function, Definition of limit of a function (\in - δ

definition),
$$\lim_{x\to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$
, $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$,

UNIT -II 06 Hours

• Matrices and Determinant:

Introduction matrices, Types of matrices, Operation on matrices, Transpose of a matrix, Matrix Multiplication, Determinants, Properties of determinants, Product of determinants, Minors and co-Factors, Adjoint or adjugate of a square matrix, Singular and non-singular matrices, Inverse of a matrix, Solution of system of linear of equations using matrix method, Cramer's rule, Characteristic equation and roots of a square matrix, Cayley–Hamilton theorem, Application of Matrices in solving Pharmacokinetic equations

UNIT – III 06 Hours

• Calculus

Differentiation: Introductions, Derivative of a function, Derivative of a constant, Derivative of a product of a constant and a function, Derivative of the sum or difference of two functions, Derivative of the product of two functions (product formula), Derivative of the quotient of two functions (Quotient formula) – **Without Proof**, Derivative of x^n w.r.tx, where n is any rational number, Derivative of e^x , Derivative of $\log_e x$, Derivative of e^x , Derivative of trigonometric functions from first principles (without **Proof**), Successive Differentiation, Conditions for a function to be a maximum or a minimum at a point. Application

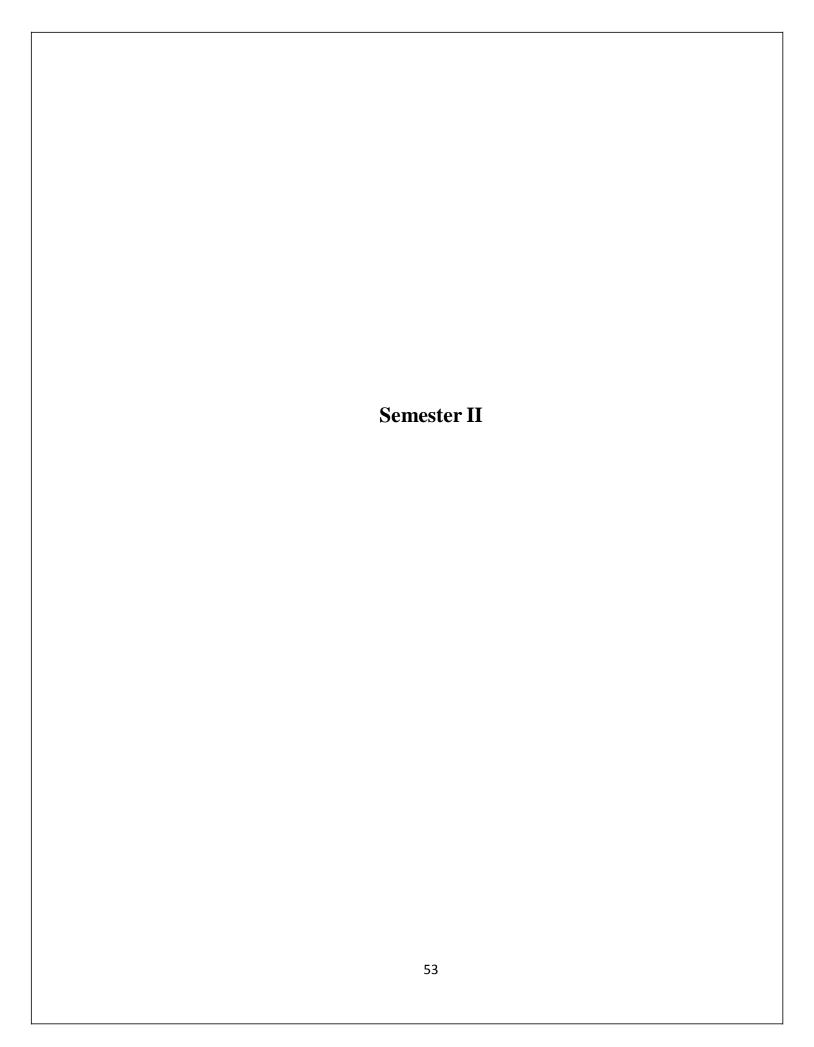
UNIT – IV 06 Hours

Analytical Geometry

Introduction: Signs of the Coordinates, Distance formula,

Straight Line: Slope or gradient of a straight line, Conditions for parallelism and perpendicularity of two lines, Slope of a line joining two points, Slope – intercept form of a straight line

Integration:


Introduction, Definition, Standard formulae, Rules of integration, Method of substitution, Method of Partial fractions, Integration by parts, definite integrals, application

UNIT-V 06 Hours

- **Differential Equations**: Some basic definitions, Order and degree, Equations in separable form, Homogeneous equations, Linear Differential equations, Exact equations, **Application in solving Pharmacokinetic equations**
- Laplace Transform: Introduction, Definition, Properties of Laplace transform, Laplace Transforms of elementary functions, Inverse Laplace transforms, Laplace transform of derivatives, Application to solve Linear differential equations, Application in solving Chemical kinetics and Pharmacokinetics equations

Recommended Books (Latest Edition)

- 1. Differential Calculus by Shanthinarayan
- 2. Pharmaceutical Mathematics with application to Pharmacy by Panchaksharappa Gowda D.H.
- 3. Integral Calculus by Shanthinarayan
- 4. Higher Engineering Mathematics by Dr.B.S.Grewal

BP 201T. HUMAN ANATOMY AND PHYSIOLOGY-II (Theory)

45 Hours

Scope: This subject is designed to impart fundamental knowledge on the structure and functions of the various systems of the human body. It also helps in understanding both homeostatic mechanisms. The subject provides the basic knowledge required to understand the various disciplines of pharmacy.

Objectives: Upon completion of this course the student should be able to:

- 1. Explain the gross morphology, structure and functions of various organs of the human body.
- 2. Describe the various homeostatic mechanisms and their imbalances.
- 3. Identify the various tissues and organs of different systems of human body.
- 4. Perform the hematological tests like blood cell counts, haemoglobin estimation, bleeding/clotting time etc and also record blood pressure, heart rate, pulse and respiratory volume.
- 5. Appreciate coordinated working pattern of different organs of each system
- 6. Appreciate the interlinked mechanisms in the maintenance of normal functioning (homeostasis) of human body.

Course Content:

Unit I 10 hours

• Nervous system

Organization of nervous system, neuron, neuroglia, classification and properties of nerve fibre, electrophysiology, action potential, nerve impulse, receptors, synapse, neurotransmitters.

Central nervous system: Meninges, ventricles of brain and cerebrospinal fluid.structure and functions of brain (cerebrum, brain stem, cerebellum), spinal cord (gross structure, functions of afferent and efferent nerve tracts,reflex activity)

Unit II 06 hours

• Digestive system

Anatomy of GI Tract with special reference to anatomy and functions of stomach, (Acid production in the stomach, regulation of acid production through parasympathetic nervous system, pepsin role in protein digestion) small intestine

and large intestine, anatomy and functions of salivary glands, pancreas and liver, movements of GIT, digestion and absorption of nutrients and disorders of GIT.

Energetics

Formation and role of ATP, Creatinine Phosphate and BMR.

Unit III

• Respiratory system

10 hours

Anatomy of respiratory system with special reference to anatomy of lungs, mechanism of respiration, regulation of respiration

Lung Volumes and capacities transport of respiratory gases, artificial respiration, and resuscitation methods.

• Urinary system

Anatomy of urinary tract with special reference to anatomy of kidney and nephrons, functions of kidney and urinary tract, physiology of urine formation, micturition reflex and role of kidneys in acid base balance, role of RAS in kidney and disorders of kidney.

Unit IV 10 hours

• Endocrine system

Classification of hormones, mechanism of hormone action, structure and functions of pituitary gland, thyroid gland, parathyroid gland, adrenal

gland, pancreas, pineal gland, thymus and their disorders.

Unit V 09 hours

• Reproductive system

Anatomy of male and female reproductive system, Functions of male and female reproductive system, sex hormones, physiology of menstruation, fertilization, spermatogenesis, oogenesis, pregnancy and parturition

• Introduction to genetics

Chromosomes, genes and DNA, protein synthesis, genetic pattern of inheritance

BP 207 P. HUMAN ANATOMY AND PHYSIOLOGY (Practical)

4 Hours/week

Practical physiology is complimentary to the theoretical discussions in physiology. Practicals allow the verification of physiological processes discussed in theory classes through experiments on living tissue, intact animals or normal human beings. This is helpful for developing an insight on the subject.

- 1. To study the integumentary and special senses using specimen, models, etc.,
- 2. To study the nervous system using specimen, models, etc.,
- 3. To study the endocrine system using specimen, models, etc
- 4. To demonstrate the general neurological examination
- 5. To demonstrate the function of olfactory nerve
- 6. To examine the different types of taste.
- 7. To demonstrate the visual acuity
- 8. To demonstrate the reflex activity
- 9. Recording of body temperature
- 10. To demonstrate positive and negative feedback mechanism.
 - 11. Determination of tidal volume and vital capacity.
 - 12. Study of digestive, respiratory, cardiovascular systems, urinary and reproductive systems with the help of models, charts and specimens.
 - 13. Recording of basal mass index
 - 14. Study of family planning devices and pregnancy diagnosis test.
 - 15. Demonstration of total blood count by cell analyser
 - 16. Permanent slides of vital organs and gonads.

Recommended Books (Latest Editions)

- 1. Essentials of Medical Physiology by K. Sembulingam and P. Sembulingam. Jaypee brothers medical publishers, New Delhi.
- 2. Anatomy and Physiology in Health and Illness by Kathleen J.W. Wilson, Churchill Livingstone, New York
- 3. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co,Riverview,MI USA

- 4. Text book of Medical Physiology- Arthur C, Guyton and John. E. Hall. Miamisburg, OH, U.S.A.
- 5. Principles of Anatomy and Physiology by Tortora Grabowski. Palmetto, GA, U.S.A.
- 6. Textbook of Human Histology by Inderbir Singh, Jaypee brothers medical publishers, New Delhi.
- 7. Textbook of Practical Physiology by C.L. Ghai, Jaypee brothers medical publishers, New Delhi.
- 8. Practical workbook of Human Physiology by K. Srinageswari and Rajeev Sharma, Jaypee brother's medical publishers, New Delhi.

Reference Books:

- 1. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co, Riverview, MI USA
- 2. Text book of Medical Physiology- Arthur C, Guyton and John. E. Hall. Miamisburg, OH, U.S.A.
- 3. Human Physiology (vol 1 and 2) by Dr. C.C. Chatterrje ,Academic Publishers Kolkata

BP202T. PHARMACEUTICAL ORGANIC CHEMISTRY –I (Theory)

45 Hours

Scope: This subject deals with classification and nomenclature of simple organic compounds, structural isomerism, intermediates forming in reactions, important physical properties, reactions and methods of preparation of these compounds. The syllabus also emphasizes on mechanisms and orientation of reactions.

Objectives: Upon completion of the course the student shall be able to

- 1. write the structure, name and the type of isomerism of the organic compound
- 2. write the reaction, name the reaction and orientation of reactions
- 3. account for reactivity/stability of compounds,
- 4. identify/confirm the identification of organic compound

Course Content:

General methods of preparation and reactions of compounds superscripted with asterisk (*) to be explained

To emphasize on definition, types, classification, principles/mechanisms, applications, examples and differences

UNIT-I 07 Hours

• Classification, nomenclature and isomerism

Classification of Organic Compounds

Common and IUPAC systems of nomenclature of organic compounds

(up to 10 Carbons open chain and carbocyclic compounds)

Structural isomerisms in organic compounds

UNIT-II10 Hours

• Alkanes*, Alkenes* and Conjugated dienes*

SP³ hybridization in alkanes, Halogenation of alkanes, uses of paraffins.

Stabilities of alkenes, SP² hybridization in alkenes

 E_1 and E_2 reactions – kinetics, order of reactivity of alkyl halides, rearrangement of carbocations, Saytzeffs orientation and evidences. E_1 verses E_2 reactions, Factors affecting E_1 and E_2 reactions. Ozonolysis, electrophilic addition reactions of alkenes, Markownikoff's orientation, free radical addition reactions of alkenes, Anti Markownikoff's orientation.

Stability of conjugated dienes, Diel-Alder, electrophilic addition, free radical addition reactions of conjugated dienes, allylic rearrangement

UNIT-III10 Hours

Alkyl halides*

SN₁ and SN₂ reactions - kinetics, order of reactivity of alkyl halides, stereochemistry and rearrangement of carbocations.

SN₁ versus SN₂ reactions, Factors affecting SN₁ and SN₂ reactions

Structure and uses of ethylchloride, Chloroform, trichloroethylene, tetrachloroethylene, dichloromethane, tetrachloromethane and iodoform.

• **Alcohols*-** Qualitative tests, Structure and uses of Ethyl alcohol, Methyl alcohol, chlorobutanol, Cetosteryl alcohol, Benzyl alcohol, Glycerol, Propylene glycol

UNIT-IV10 Hours

• Carbonyl compounds* (Aldehydes and ketones)

Nucleophilic addition, Electromeric effect, aldol condensation, Crossed Aldol condensation, Cannizzaro reaction, Crossed Cannizzaro reaction, Benzoin condensation, Perkin condensation, qualitative tests, Structure and uses of Formaldehyde, Paraldehyde, Acetone, Chloral hydrate, Hexamine, Benzaldehyde, Vanilin, Cinnamaldehyde.

UNIT-V 08 Hours

Carboxylic acids*

Acidity of carboxylic acids, effect of substituents on acidity, inductive effect and qualitative tests for carboxylic acids ,amide and ester

Structure and Uses of Acetic acid, Lactic acid, Tartaric acid, Citric acid, Succinic acid. Oxalic acid, Salicylic acid, Benzoic acid, Benzyl benzoate, Dimethyl phthalate, Methyl salicylate and Acetyl salicylic acid

• Aliphatic amines* - Basicity, effect of substituent on Basicity. Qualitative test, Structure and uses of Ethanolamine, Ethylenediamine, Amphetamine

BP208P. PHARMACEUTICAL ORGANIC CHEMISTRY -I (Practical)

4 Hours / week

- 1. Systematic qualitative analysis of unknown organic compounds like
 - 1. Preliminary test: Color, odour, aliphatic/aromatic compounds, saturation and unsaturation, etc.
 - 2. Detection of elements like Nitrogen, Sulphur and Halogen by Lassaigne's test
 - 3. Solubility test
 - 4. Functional group test like Phenols, Amides/ Urea, Carbohydrates, Amines, Carboxylic acids, Aldehydes and Ketones, Alcohols, Esters, Aromatic and Halogenated Hydrocarbons, Nitro compounds and Anilides.
 - 5. Melting point/Boiling point of organic compounds
 - 6. Identification of the unknown compound from the literature using melting point/ boiling point.
 - 7. Preparation of the derivatives and confirmation of the unknown compound by melting point/ boiling point.
 - 8. Minimum 5 unknown organic compounds to be analysed systematically.
- 2. Preparation of suitable solid derivatives from organic compounds
- 3. Construction of molecular models

Recommended Books (Latest Editions)

- 1. Organic Chemistry by Morrison and Boyd
- 2. Organic Chemistry by I.L. Finar, Volume-I
- 3. Textbook of Organic Chemistry by B.S. Bahl & Arun Bahl.
- 4. Organic Chemistry by P.L.Soni
- 5. Practical Organic Chemistry by Mann and Saunders.
- 6. Vogel's text book of Practical Organic Chemistry
- 7. Advanced Practical organic chemistry by N.K. Vishnoi.
- 8. Introduction to Organic Laboratory techniques by Pavia, Lampman and Kriz.
- 9. Reaction and reaction mechanism by Ahluwaliah/Chatwal.

BP203 T. BIOCHEMISTRY (Theory)

45 Hours

Scope: Biochemistry deals with complete understanding of the molecular levels of the chemical process associated with living cells. The scope of the subject is providing biochemical facts and the principles to understand metabolism of nutrient molecules in physiological and pathological conditions. It is also emphasizing on genetic organization of mammalian genome and hetero & autocatalytic functions of DNA.

Objectives: Upon completion of course student shell able to

- 1. Understand the catalytic role of enzymes, importance of enzyme inhibitors in design of new drugs, therapeutic and diagnostic applications of enzymes.
- 2. Understand the metabolism of nutrient molecules in physiological and pathological conditions.
- 3. Understand the genetic organization of mammalian genome and functions of DNA in the synthesis of RNAs and proteins.

Course Content:

UNIT I 08 Hours

Biomolecules

Introduction, classification, chemical nature and biological role of carbohydrate, lipids, nucleic acids, amino acids and proteins.

Bioenergetics

Concept of free energy, endergonic and exergonic reaction, Relationship between free energy, enthalpy and entropy; Redox potential.

Energy rich compounds; classification; biological significances of ATP and cyclic AMP

UNIT II 10 Hours

• Carbohydrate metabolism

Glycolysis – Pathway, energetics and significance

Citric acid cycle- Pathway, energetics and significance

HMP shunt and its significance; Glucose-6-Phosphate dehydrogenase (G6PD) deficiency

Glycogen metabolism Pathways and glycogen storage diseases (GSD)

Gluconeogenesis- Pathway and its significance

Hormonal regulation of blood glucose level and Diabetes mellitus

Biological oxidation

Electron transport chain (ETC) and its mechanism.

Oxidative phosphorylation & its mechanism and substrate level phosphorylation

Inhibitors ETC and oxidative phosphorylation/Uncouplers

UNIT III 10 Hours

• Lipid metabolism

-Oxidation of saturated fatty acid (Palmitic acid)

Formation and utilization of ketone bodies; ketoacidosis

De novo synthesis of fatty acids (Palmitic acid)

Biological significance of cholesterol and conversion of cholesterol into bile acids, steroid hormone and vitamin D

Disorders of lipid metabolism: Hypercholesterolemia, atherosclerosis, fatty liver and obesity.

Amino acid metabolism

General reactions of amino acid metabolism: Transamination, deamination & decarboxylation, urea cycle and its disorders

Catabolism of phenylalanine and tyrosine and their metabolic disorders (Phenyketonuria, Albinism, alkeptonuria, tyrosinemia)

Synthesis and significance of biological substances; 5-HT, melatonin, dopamine, noradrenaline, adrenaline

Catabolism of heme; hyperbilirubinemia and jaundice

UNIT IV 10 Hours

• Nucleic acid metabolism and genetic information transfer

Biosynthesis of purine and pyrimidine nucleotides

Catabolism of purine nucleotides and Hyperuricemia and Gout disease

Organization of mammalian genome

Structure of DNA and RNA and their functions

DNA replication (semi conservative model)

Transcription or RNA synthesis

Genetic code, Translation or Protein synthesis and inhibitors

UNIT V 07 Hours

• Enzymes

Introduction, properties, nomenclature and IUB classification of enzymes

Enzyme kinetics (Michaelis plot, Line Weaver Burke plot)

Enzyme inhibitors with examples

Regulation of enzymes: enzyme induction and repression, allosteric enzymes regulation

Therapeutic and diagnostic applications of enzymes and isoenzymes

Coenzymes –Structure and biochemical functions

BP 209 P. BIOCHEMISTRY (Practical)

4 Hours / Week

- 1. Qualitative analysis of carbohydrates (Glucose, Fructose, Lactose, Maltose, Sucrose and starch)
- 2. Identification tests for Proteins (albumin and Casein)
- 3. Quantitative analysis of reducing sugars (DNSA method) and Proteins (Biuret method)
- 4. Qualitative analysis of urine for abnormal constituents
- 5. Determination of blood creatinine
- 6. Determination of blood sugar
- 7. Determination of serum total cholesterol
- 8. Preparation of buffer solution and measurement of pH
- 9. Study of enzymatic hydrolysis of starch
- 10. Determination of Salivary amylase activity
- 11. Study the effect of Temperature on Salivary amylase activity.
- 12. Study the effect of substrate concentration on salivary amylase activity.

Recommended Books (Latest Editions)

- 1. Principles of Biochemistry by Lehninger.
- 2. Harper's Biochemistry by Robert K. Murry, Daryl K. Granner and Victor W. Rodwell.
- 3. Biochemistry by Stryer.
- 4. Biochemistry by D. Satyanarayan and U.Chakrapani
- 5. Textbook of Biochemistry by Rama Rao.
- 6. Textbook of Biochemistry by Deb.
- 7. Outlines of Biochemistry by Conn and Stumpf
- 8. Practical Biochemistry by R.C. Gupta and S. Bhargavan.
- 9. Introduction of Practical Biochemistry by David T. Plummer. (3rd Edition)
- 10. Practical Biochemistry for Medical students by Rajagopal and Ramakrishna.
- 11. Practical Biochemistry by Harold Varley.

BP 204T.PATHOPHYSIOLOGY (THEORY)

45Hours

Scope: Pathophysiology is the study of causes of diseases and reactions of the body to such disease producing causes. This course is designed to impart a thorough knowledge of the relevant aspects of pathology of various conditions with reference to its pharmacological applications, and understanding of basic pathophysiological mechanisms. Hence it will not only help to study the syllabus of pathology, but also to get baseline knowledge required to practice medicine safely, confidently, rationally and effectively.

Objectives: Upon completion of the subject student shall be able to –

- 1. Describe the etiology and pathogenesis of the selected disease states;
- 2. Name the signs and symptoms of the diseases; and
- 3. Mention the complications of the diseases.

Course content:

Unit I 10Hours

• Basic principles of Cell injury and Adaptation:

Introduction, definitions, Homeostasis, Components and Types of Feedback systems, Causes of cellular injury, Pathogenesis (Cell membrane damage, Mitochondrial damage, Ribosome damage, Nuclear damage), Morphology of cell injury – Adaptive changes (Atrophy, Hypertrophy, hyperplasia, Metaplasia, Dysplasia), Cell swelling, Intra cellular accumulation, Calcification, Enzyme leakage and Cell Death Acidosis & Alkalosis, Electrolyte imbalance

• Basic mechanism involved in the process of inflammation and repair:

Introduction, Clinical signs of inflammation, Different types of Inflammation, Mechanism of Inflammation – Alteration in vascular permeability and blood flow, migration of WBC's, Mediators of inflammation, Basic principles of wound healing in the skin, Pathophysiology of Atherosclerosis

Unit II 10Hours

• Cardiovascular System:

Hypertension, congestive heart failure, ischemic heart disease (angina,myocardial infarction, atherosclerosis and arteriosclerosis)

- **Respiratory system:** Asthma, Chronic obstructive airways diseases.
- **Renal system:** Acute and chronic renal failure

Unit II 10Hours

Haematological Diseases:

Iron deficiency, megaloblastic anemia (Vit B12 and folic acid), sickle cell anemia, thalasemia, hereditary acquired anemia, hemophilia

- Endocrine system: Diabetes, thyroid diseases, disorders of sex hormones
- **Nervous system:** Epilepsy, Parkinson's disease, stroke, psychiatric disorders: depression, schizophrenia and Alzheimer's disease.
- Gastrointestinal system: Peptic Ulcer

Unit IV 8 Hours

- Inflammatory bowel diseases, jaundice, hepatitis (A,B,C,D,E,F) alcoholic liver disease.
- **Disease of bones and joints:** Rheumatoid arthritis, osteoporosis and gout
- **Principles of cancer:** classification, etiology and pathogenesis of cancer
- **Diseases of bones and joints:** Rheumatoid Arthritis, Osteoporosis, Gout
- Principles of Cancer: Classification, etiology and pathogenesis of Cancer

Unit V 7 Hours

• Infectious diseases: Meningitis, Typhoid, Leprosy, Tuberculosis

Urinary tract infections

Sexually transmitted diseases: AIDS, Syphilis, Gonorrhea

Recommended Books (Latest Editions)

- 1. Vinay Kumar, Abul K. Abas, Jon C. Aster; Robbins & Cotran Pathologic Basis of Disease; South Asia edition; India; Elsevier; 2014.
- 2. Harsh Mohan; Text book of Pathology; 6th edition; India; Jaypee Publications; 2010.
- 3. Laurence B, Bruce C, Bjorn K.; Goodman Gilman's The Pharmacological Basis of Therapeutics; 12th edition; New York; McGraw-Hill; 2011.
- 4. Best, Charles Herbert 1899-1978; Taylor, Norman Burke 1885-1972; West, John B (John Burnard); Best and Taylor's Physiological basis of medical practice; 12th ed; united states;
- 5. William and Wilkins, Baltimore;1991 [1990 printing].
- 6. Nicki R. Colledge, Brian R. Walker, Stuart H. Ralston; Davidson's Principles and Practice of Medicine; 21st edition; London; ELBS/Churchill Livingstone; 2010.
- 7. Guyton A, John .E Hall; Textbook of Medical Physiology; 12th edition; WB Saunders Company; 2010.
- 8. Joseph DiPiro, Robert L. Talbert, Gary Yee, Barbara Wells, L. Michael Posey; Pharmacotherapy: A Pathophysiological Approach; 9th edition; London; McGraw-Hill Medical; 2014.
- 9. V. Kumar, R. S. Cotran and S. L. Robbins; Basic Pathology; 6th edition; Philadelphia; WB Saunders Company; 1997.
- 10. Roger Walker, Clive Edwards; Clinical Pharmacy and Therapeutics; 3rd edition; London; Churchill Livingstone publication; 2003.

Recommended Journals

- 1. The Journal of Pathology. ISSN: 1096-9896 (Online)
- 2. The American Journal of Pathology. ISSN: 0002-9440
- 3. Pathology. 1465-3931 (Online)
- 4. International Journal of Physiology, Pathophysiology and Pharmacology. ISSN: 1944-8171 (Online)
- 5. Indian Journal of Pathology and Microbiology. ISSN-0377-4929.

BP205 T. COMPUTER APPLICATIONS IN PHARMACY (Theory)

30 Hrs (2 Hrs/Week)

Scope: This subject deals with the introduction Database, Database Management system, computer application in clinical studies and use of databases.

Objectives: Upon completion of the course the student shall be able to

- 1. know the various types of application of computers in pharmacy
- 2. know the various types of databases
- 3. know the various applications of databases in pharmacy

Course content:

UNIT – I 06 hours

Number system: Binary number system, Decimal number system, Octal number system, Hexadecimal number systems, conversion decimal to binary, binary to decimal, octal to binary etc, binary addition, binary subtraction – One's complement ,Two's complement method, binary multiplication, binary division

Concept of Information Systems and Software: Information gathering, requirement and feasibility analysis, data flow diagrams, process specifications, input/output design, process life cycle, planning and managing the project

UNIT –II 06 hours

Web technologies:Introduction to HTML, XML,CSS and Programming languages, introduction to web servers and Server Products

Introduction to databases, MYSQL, MS ACCESS, Pharmacy Drug database

UNIT – III 06 hours

Application of computers in Pharmacy – Drug information storage and retrieval, Pharmacokinetics, Mathematical model in Drug design, Hospital and Clinical Pharmacy, Electronic Prescribing and discharge (EP) systems, barcode medicine identification and automated dispensing of drugs, mobile technology and adherence monitoring

Diagnostic System, Lab-diagnostic System, Patient Monitoring System, Pharma Information System

UNIT – IV 06 hours

Bioinformatics: Introduction, Objective of Bioinformatics, Bioinformatics Databases, Concept of Bioinformatics, Impact of Bioinformatics in Vaccine Discovery

UNIT-V 06 hours

Computers as data analysis in Preclinical development:

Chromatographic dada analysis(CDS), Laboratory Information management System (LIMS) and Text Information Management System(TIMS)

BP210P. COMPUTER APPLICATIONS IN PHARMACY (Practical)

- 1. Design a questionnaire using a word processing package to gather information about a particular disease.
- 2. Create a HTML web page to show personal information.
- Retrieve the information of a drug and its adverse effects using online tools
- 4 Creating mailing labels Using Label Wizard, generating label in MS WORD
- 5 Create a database in MS Access to store the patient information with the required fields Using access
- 6. Design a form in MS Access to view, add, delete and modify the patient record in the database
- 7. Generating report and printing the report from patient database
- 8. Creating invoice table using MS Access
- 9. Drug information storage and retrieval using MS Access
- 10. Creating and working with queries in MS Access
- 11. Exporting Tables, Queries, Forms and Reports to web pages
- 12. Exporting Tables, Queries, Forms and Reports to XML pages

Recommended books (Latest edition):

- 1. Computer Application in Pharmacy William E.Fassett –Lea and Febiger, 600 South Washington Square, USA, (215) 922-1330.
- Computer Application in Pharmaceutical Research and Development –Sean Ekins Wiley-Interscience, A John Willey and Sons, INC., Publication, USA
- 3. Bioinformatics (Concept, Skills and Applications) S.C.Rastogi-CBS Publishers and Distributors, 4596/1- A, 11 Darya Gani, New Delhi 110 002(INDIA)
- Microsoft office Access 2003, Application Development Using VBA, SQL Server, DAP and Infopath – Cary N.Prague – Wiley Dreamtech India (P) Ltd., 4435/7, Ansari Road, Daryagani, New Delhi - 110002

BP 206 T. ENVIRONMENTAL SCIENCES (Theory)

30 hours

Scope:Environmental Sciences is the scientific study of the environmental system and the status of its inherent or induced changes on organisms. It includes not only the study of physical and biological characters of the environment but also the social and cultural factors and the impact of man on environment.

Objectives: Upon completion of the course the student shall be able to:

- 1. Create the awareness about environmental problems among learners.
- 2. Impart basic knowledge about the environment and its allied problems.
- 3. Develop an attitude of concern for the environment.
- 4. Motivate learner to participate in environment protection and environment improvement.
- 5. Acquire skills to help the concerned individuals in identifying and solving environmental problems.
- 6. Strive to attain harmony with Nature.

Course content:

Unit-I 10hours

The Multidisciplinary nature of environmental studies

Natural Resources

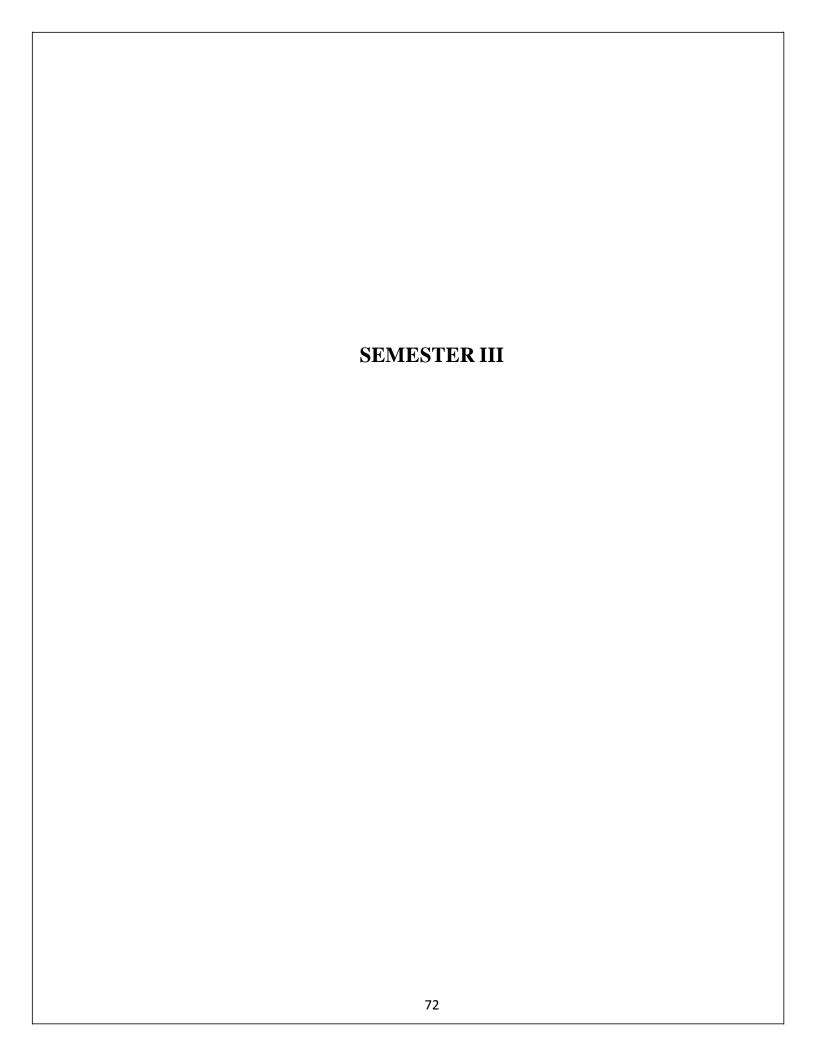
Renewable and non-renewable resources:

Natural resources and associated problems

a) Forest resources; b) Water resources; c) Mineral resources; d) Food resources; e) Energy resources; f) Land resources: Role of an individual in conservation of natural resources.

Unit-II 10hours

Ecosystems


- Concept of an ecosystem.
- Structure and function of an ecosystem.
- Introduction, types, characteristic features, structure and function of the ecosystems: Forest ecosystem; Grassland ecosystem; Desert ecosystem; Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Unit- III 10hours

Environmental Pollution: Air pollution; Water pollution; Soil pollution

Recommended Books (Latest edition):

- 1. Y.K. Sing, Environmental Science, New Age International Pvt, Publishers, Bangalore
- 2. Agarwal, K.C. 2001 Environmental Biology, Nidi Publ. Ltd. Bikaner.
- 3. Bharucha Erach, The Biodiversity of India, Mapin Pu blishing Pvt. Ltd., Ahmedabad 380 013, India,
- 4. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p
- 5. Clark R.S., Marine Pollution, Clanderson Press Oxford
- 6. Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumbai, 1196p
- 7. De A.K., Environmental Chemistry, Wiley Eastern Ltd.
- 8. Down of Earth, Centre for Science and Environment

BP301T. PHARMACEUTICAL ORGANIC CHEMISTRY –II (Theory)

45 Hours

Scope: This subject deals with general methods of preparation and reactions of some organic compounds. Reactivity of organic compounds are also studied here. The syllabus emphasizes on mechanisms and orientation of reactions. Chemistry of fats and oils are also included in the syllabus.

Objectives: Upon completion of the course the student shall be able to

- 1. write the structure, name and the type of isomerism of the organic compound
- 2. write the reaction, name the reaction and orientation of reactions
- 3. account for reactivity/stability of compounds,
- 4. prepare organic compounds

Course Content:

General methods of preparation and reactions of compounds superscripted with asterisk (*) to be explained

To emphasize on definition, types, classification, principles/mechanisms, applications, examples and differences

UNIT I 10 Hours

• Benzene and its derivatives

- **A.** Analytical, synthetic and other evidences in the derivation of structure of benzene, Orbital picture, resonance in benzene, aromatic characters. Huckel's rule
- **B.** Reactions of benzene nitration, sulphonation, halogenation-reactivity, Friedelcrafts alkylation- reactivity, limitations, Friedelcrafts acylation.
- **C.** Substituents, effect of substituents on reactivity and orientation of mono substituted benzene compounds towards electrophilic substitution reaction
- **D.** Structure and uses of DDT, Saccharin, BHC and Chloramine

UNIT II 10 Hours

- **Phenols*** Acidity of phenols, effect of substituents on acidity, qualitative tests, Structure and uses of phenol, cresols, resorcinol, naphthols
- **Aromatic Amines*** Basicity of amines, effect of substituents on basicity, and synthetic uses of aryl diazonium salts
- **Aromatic Acids*** Acidity, effect of substituents on acidity and important reactions of benzoic acid.

UNIT III

10 Hours

- Fats and Oils
 - a. Fatty acids reactions.

- b. Hydrolysis, Hydrogenation, Saponification and Rancidity of oils, Drying oils.
- c. Analytical constants Acid value, Saponification value, Ester value, Iodine value, Acetyl value, Reichert Meissl (RM) value significance and principle involved in their determination.

UNIT IV 08 Hours

• Polynuclear hydrocarbons:

- a. Synthesis, reactions
- b. Structure and medicinal uses of Naphthalene, Phenanthrene, Anthracene, Diphenylmethane, Triphenylmethane and their derivatives

UNIT V 07 Hours

• Cyclo alkanes*

Stabilities – Baeyer's strain theory, limitation of Baeyer's strain theory, Coulson and Moffitt's modification, Sachse Mohr's theory (Theory of strainless rings), reactions of cyclopropane and cyclobutane only

BP305P. PHARMACEUTICAL ORGANIC CHEMISTRY -II (Practical)

4 Hrs/week

- I Experiments involving laboratory techniques
 - Recrystallization
 - Steam distillation
- II Determination of following oil values (including standardization of reagents)
 - Acid value
 - Saponification value
 - Iodine value

III Preparation of compounds

- Benzanilide/Phenyl benzoate/Acetanilide from Aniline/ Phenol /Aniline by acylation reaction.
- 2,4,6-Tribromo aniline/Para bromo acetanilide from Aniline/
- Acetanilide by halogenation (Bromination) reaction.
- 5-Nitro salicylic acid/Meta di nitro benzene from Salicylic acid / Nitro benzene by nitration reaction.
- Benzoic acid from Benzyl chloride by oxidation reaction.
- Benzoic acid/ Salicylic acid from alkyl benzoate/ alkyl salicylate by hydrolysis reaction.
- 1-Phenyl azo-2-napthol from Aniline by diazotization and coupling reactions.
- Benzil from Benzoin by oxidation reaction.
- Dibenzal acetone from Benzaldehyde by Claison Schmidt reaction
- Cinnammic acid from Benzaldehyde by Perkin reaction
- P-Iodo benzoic acid from P-amino benzoic acid

Recommended Books (Latest Editions)

- 1. Organic Chemistry by Morrison and Boyd
- 2. Organic Chemistry by I.L. Finar, Volume-I
- 3. Textbook of Organic Chemistry by B.S. Bahl & Arun Bahl.
- 4. Organic Chemistry by P.L.Soni
- 5. Practical Organic Chemistry by Mann and Saunders.
- 6. Vogel's text book of Practical Organic Chemistry
- 7. Advanced Practical organic chemistry by N.K. Vishnoi.

8. Introduction to Organic Laboratory techniques by Pavia, Lampman and Kriz.

BP302T. PHYSICAL PHARMACEUTICS-I (Theory)

45Hours

Scope: The course deals with the various physica and physicochemical properties, and principles involved in dosage forms/formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms.

Objectives: Upon the completion of the course student shall be able to

- 1. Understand various physicochemical properties of drug molecules in the designing the dosage forms
- 2. Know the principles of chemical kinetics & to use them for stability testing nad determination of expiry date of formulations
- 3. Demonstrate use of physicochemical properties in the formulation development and evaluation of dosage forms.

Course Content:

UNIT-I 10 Hours

Solubility of drugs: Solubility expressions, mechanisms of solute solvent interactions, ideal solubility parameters, solvation & association, quantitative approach to the factors influencing solubility of drugs, diffusion principles in biological systems. Solubility of gas in liquids, solubility of liquids in liquids, (Binary solutions, ideal solutions) Raoult's law, real solutions. Partially miscible liquids, Critical solution temperature and applications. Distribution law, its limitations and applications

UNIT-II 10Hours

States of Matter and properties of matter: State of matter, changes in the state of matter, latent heats, vapour pressure, sublimation critical point, eutectic mixtures, gases, aerosols – inhalers, relative humidity, liquid complexes, liquid crystals, glassy states, solid-crystalline, amorphous & polymorphism.

Physicochemical properties of drug molecules: Refractive index, optical rotation, dielectric constant, dipole moment, dissociation constant, determinations and applications

UNIT-III 08 Hours

Surface and interfacial phenomenon: Liquid interface, surface & interfacial tensions,

surface free energy, measurement of surface & interfacial tensions, spreading coefficient, adsorption at liquid interfaces, surface active agents, HLB Scale, solubilisation, detergency, adsorption at solid interface.

UNIT-IV 08Hours

Complexation and protein binding: Introduction, Classification of Complexation, Applications, methods of analysis, protein binding, Complexation and drug action, crystalline structures of complexes and thermodynamic treatment of stability constants.

UNIT-V 07 Hours

pH, buffers and Isotonic solutions: Sorensen's pH scale, pH determination (electrometric and calorimetric), applications of buffers, buffer equation, buffer capacity, buffers in pharmaceutical and biological systems, buffered isotonic solutions.

BP306P. PHYSICAL PHARMACEUTICS – I (Practical)

4 Hrs/week

- 1. Determination the solubility of drug at room temperature
- 2. Determination of pKa value by Half Neutralization/ Henderson Hasselbalch equation.
- 3. Determination of Partition co- efficient of benzoic acid in benzene and water
- 4. Determination of Partition co- efficient of Iodine in CCl₄ and water
- 5. Determination of % composition of NaCl in a solution using phenol-water system by CST method
- 6. Determination of surface tension of given liquids by drop count and drop weight method
- 7. Determination of HLB number of a surfactant by saponification method
- 8. Determination of Freundlich and Langmuir constants using activated char coal
- 9. Determination of critical micellar concentration of surfactants
- 10. Determination of stability constant and donor acceptor ratio of PABA-Caffeine complex by solubility method
- 11. Determination of stability constant and donor acceptor ratio of Cupric-Glycine complex by pH titration method

Recommended Books: (Latest Editions)

- 1. Physical Pharmacy by Alfred Martin
- 2. Experimental Pharmaceutics by Eugene, Parott.
- 3. Tutorial Pharmacy by Cooper and Gunn.
- 4. Stocklosam J. Pharmaceutical Calculations, Lea & Febiger, Philadelphia.
- 5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, MarcelDekkar Inc.
- 6. Liberman H.A, Lachman C, Pharmaceutical Dosage forms. Disperse systems, volume 1, 2, 3. Marcel Dekkar Inc.
- 7. Physical Pharmaceutics by Ramasamy C and ManavalanR.
- 8. Laboratory Manual of Physical Pharmaceutics, C.V.S. Subramanyam, J. Thimma settee
- 9. Physical Pharmaceutics by C.V.S. Subramanyam
- 10. Test book of Physical Phramacy, by Gaurav Jain & Roop K. Khar

BP 303 T. PHARMACEUTICAL MICROBIOLOGY (Theory)

45Hours

Scope:

• Study of all categories of microorganisims especially for the production of alchol antibiotics, vaccines, vitamins enzymes etc..

Objectives: Upon completion of the subject student shall be able to;

- 1. Understand methods of identification, cultivation and preservation of various microorganisms
- 2. To understand the importance and implementation of sterlization in pharmaceutical processing and industry
- 3. Learn sterility testing of pharmaceutical products.
- 4. Carried out microbiological standardization of Pharmaceuticals.
- 5. Understand the cell culture technology and its applications in pharmaceutical industries.

Course content:

Unit I 10 Hours

Introduction, history of microbiology, its branches, scope and its importance.

Introduction to Prokaryotes and Eukaryotes

Study of ultra-structure and morphological classification of bacteria, nutritional requirements, raw materials used for culture media and physical parameters for growth, growth curve, isolation and preservation methods for pure cultures, cultivation of anaerobes, quantitative measurement of bacterial growth (total & viable count).

Study of different types of phase constrast microscopy, dark field microscopy and electron microscopy.

Unit II 10 Hours

Identification of bacteria using staining techniques (simple, Gram's &Acid fast staining) and biochemical tests (IMViC).

Study of principle, procedure, merits, demerits and applications of physical, chemical gaseous, radiation and mechanical method of sterilization.

Evaluation of the efficiency of sterilization methods.

Equipments employed in large scale sterilization.

Sterility indicators.

Unit III 10 Hours

Study of morphology, classification, reproduction/replication and cultivation of Fungi and Viruses.

Classification and mode of action of disinfectants

Factors influencing disinfection, antiseptics and their evaluation. For bacteriostatic and bactericidal actions

Evaluation of bactericidal & Bacteriostatic.

Sterility testing of products (solids, liquids, ophthalmic and other sterile products) according to IP, BP and USP.

Unit IV 08 Hours

Designing of aseptic area, laminar flow equipments; study of different sources of contamination in an aseptic area and methods of prevention, clean area classification.

Principles and methods of different microbiological assay. Methods for standardization of antibiotics, vitamins and amino acids.

Assessment of a new antibiotic.

Unit V 07Hours

Types of spoilage, factors affecting the microbial spoilage of pharmaceutical products, sources and types of microbial contaminants, assessment of microbial contamination and spoilage.

Preservation of pharmaceutical products using antimicrobial agents, evaluation of microbial stability of formulations.

Growth of animal cells in culture, general procedure for cell culture, Primary, established and transformed cell cultures.

Application of cell cultures in pharmaceutical industry and research.

BP 307P.PHARMACEUTICAL MICROBIOLOGY (Practical)

4 Hrs/week

- 1. Introduction and study of different equipments and processing, e.g., B.O.D. incubator, laminar flow, aseptic hood, autoclave, hot air sterilizer, deep freezer, refrigerator, microscopes used in experimental microbiology.
- 2. Sterilization of glassware, preparation and sterilization of media.
- 3. Sub culturing of bacteria and fungus. Nutrient stabs and slants preparations.
- 4. Staining methods- Simple, Grams staining and acid fast staining (Demonstration with practical).
- 5. Isolation of pure culture of micro-organisms by multiple streak plate technique and other techniques.
- 6. Microbiological assay of antibiotics by cup plate method and other methods
- 7. Motility determination by Hanging drop method.
- 8. Sterility testing of pharmaceuticals.
- 9. Bacteriological analysis of water
- 10. Biochemical test.

Recommended Books (Latest edition)

- 1. W.B. Hugo and A.D. Russel: Pharmaceutical Microbiology, Blackwell Scientific publications, Oxford London.
- 2. Prescott and Dunn., Industrial Microbiology, 4th edition, CBS Publishers & Distributors, Delhi.
- 3. Pelczar, Chan Kreig, Microbiology, Tata McGraw Hill edn.
- 4. Malcolm Harris, Balliere Tindall and Cox: Pharmaceutical Microbiology.
- 5. Rose: Industrial Microbiology.
- 6. Probisher, Hinsdill et al: Fundamentals of Microbiology, 9th ed. Japan
- 7. Cooper and Gunn's: Tutorial Pharmacy, CBS Publisher and Distribution.
- 8. Peppler: Microbial Technology.
- 9. I.P., B.P., U.S.P.- latest editions.
- 10. Ananthnarayan: Text Book of Microbiology, Orient-Longman, Chennai
- 11. Edward: Fundamentals of Microbiology.
- 12. N.K.Jain: Pharmaceutical Microbiology, Vallabh Prakashan, Delhi
- 13. Bergeys manual of systematic bacteriology, Williams and Wilkins- A Waverly company

BP 304 T. PHARMACEUTICAL ENGINEERING (Theory)

45 Hours

Scope: This course is designed to impart a fundamental knowledge on the art and science of various unit operations used in pharmaceutical industry.

Objectives: Upon completion of the course student shall be able:

- 1. To know various unit operations used in Pharmaceutical industries.
- 2. To understand the material handling techniques.
- 3. To perform various processes involved in pharmaceutical manufacturing process.
- 4. To carry out various test to prevent environmental pollution.
- 5. To appreciate and comprehend significance of plant lay out design for optimum use of resources.
- 6. To appreciate the various preventive methods used for corrosion control in Pharmaceutical industries.

Course content:

UNIT-I 10 Hours

- Flow of fluids: Types of manometers, Reynolds number and its significance, Bernoulli's theorem and its applications, Energy losses, Orifice meter, Venturimeter, Pitot tube and Rotometer.
- **Size Reduction:** Objectives, Mechanisms & Laws governing size reduction, factors affecting size reduction, principles, construction, working, uses, merits and demerits of Hammer mill, ball mill, fluid energy mill, Edge runner mill & end runner mill.
- **Size Separation:** Objectives, applications & mechanism of size separation, official standards of powders, sieves, size separation Principles, construction, working, uses, merits and demerits of Sieve shaker, cyclone separator, Air separator, Bag filter & elutriation tank.

UNIT-II 10 Hours

• **Heat Transfer:** Objectives, applications & Heat transfer mechanisms. Fourier's law, Heat transfer by conduction, convection & radiation. Heat interchangers & heat exchangers.

- Evaporation: Objectives, applications and factors influencing evaporation, differences between evaporation and other heat process. principles, construction, working, uses, merits and demerits of Steam jacketed kettle, horizontal tube evaporator, climbing film evaporator, forced circulation evaporator, multiple effect evaporator& Economy of multiple effect evaporator.
- **Distillation:** Basic Principles and methodology of simple distillation, flash distillation, fractional distillation, distillation under reduced pressure, steam distillation & molecular distillation

UNIT- III 08 Hours

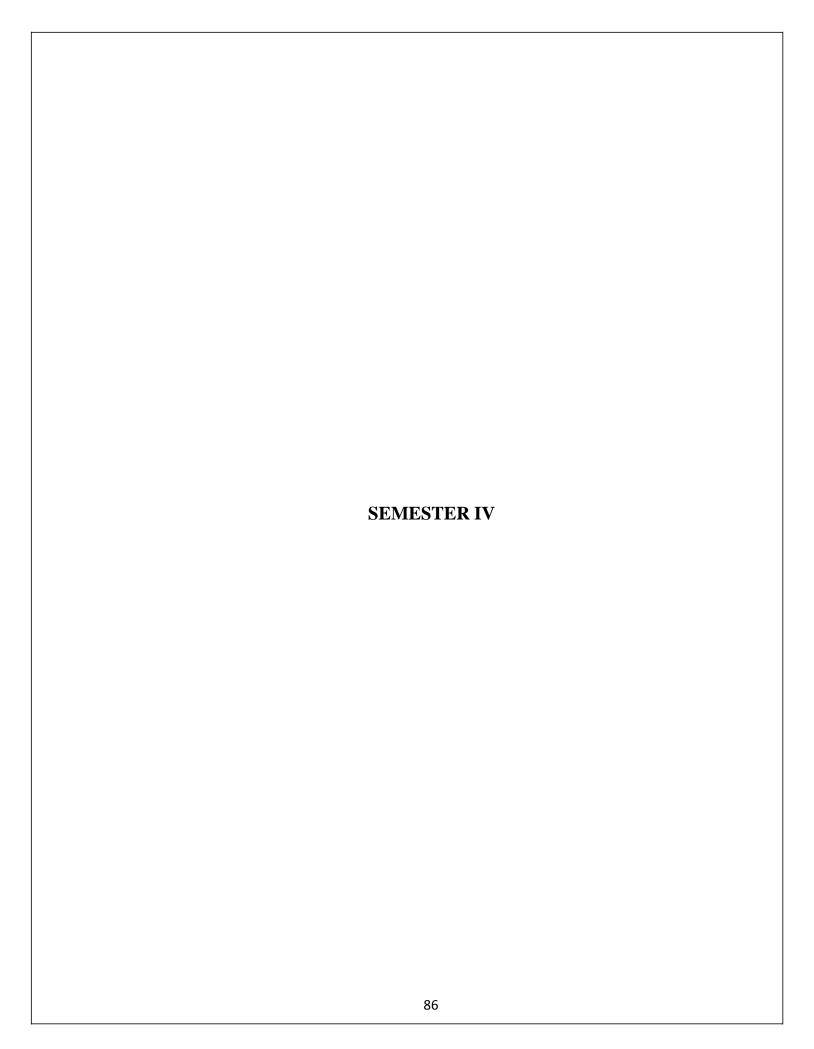
- **Drying:** Objectives, applications & mechanism of drying process, measurements & applications of Equilibrium Moisture content, rate of drying curve. principles, construction, working, uses, merits and demerits of Tray dryer, drum dryer spray dryer, fluidized bed dryer, vacuum dryer, freeze dryer.
- Mixing: Objectives, applications & factors affecting mixing, Difference between solid and liquid mixing, mechanism of solid mixing, liquids mixing and semisolids mixing. Principles, Construction, Working, uses, Merits and Demerits of Double cone blender, twin shell blender, ribbon blender, Sigma blade mixer, planetary mixers, Propellers, Turbines, Paddles & Silverson Emulsifier,

UNIT-IV 08 Hours

- **Filtration:** Objectives, applications, Theories & Factors influencing filtration, filter aids, filter medias. Principle, Construction, Working, Uses, Merits and demerits of plate & frame filter, filter leaf, rotary drum filter, Meta filter & Cartridge filter, membrane filters and Seidtz filter.
- Centrifugation: Objectives, principle & applications of Centrifugation, principles, construction, working, uses, merits and demerits of Perforated basket centrifuge, Non-perforated basket centrifuge, semi continuous centrifuge & super centrifuge.

UNIT- V 07 Hours

• Materials of pharmaceutical plant construction, Corrosion and its prevention: Factors affecting during materials selected for Pharmaceutical plant construction, Theories of corrosion, types of corrosion and there prevention. Ferrous and nonferrous metals, inorganic and organic non metals, basic of material handling systems.


Recommended Books: (Latest Editions)

- 1. Introduction to chemical engineering Walter L Badger & Julius Banchero, Latest edition.
- 2. Solid phase extraction, Principles, techniques and applications by Nigel J.K. Simpson-Latest edition.
- 3. Unit operation of chemical engineering Mcabe Smith, Latest edition.
- 4. Pharmaceutical engineering principles and practices C.V.S Subrahmanyam et al., Latest edition.
- 5. Remington practice of pharmacy- Martin, Latest edition.
- 6. Theory and practice of industrial pharmacy by Lachmann., Latest edition.
- 7. Physical pharmaceutics- C.V.S Subrahmanyam et al., Latest edition.
- 8. Cooper and Gunn's Tutorial pharmacy, S.J. Carter, Latest edition.

BP308P - PHARMACEUTICAL ENGINEERING (Practical)

4 Hours/week

- I. Determination of radiation constant of brass, iron, unpainted and painted glass.
- II. Steam distillation To calculate the efficiency of steam distillation.
- III. To determine the overall heat transfer coefficient by heat exchanger.
- IV. Construction of drying curves (for calcium carbonate and starch).
- V. Determination of moisture content and loss on drying.
- VI. Determination of humidity of air i) From wet and dry bulb temperatures –use of Dew point method.
- VII. Description of Construction working and application of Pharmaceutical Machinery such as rotary tablet machine, fluidized bed coater, fluid energy mill, de humidifier.
- VIII. Size analysis by sieving To evaluate size distribution of tablet granulations Construction of various size frequency curves including arithmetic andlogarithmic probability plots.
- IX. Size reduction: To verify the laws of size reduction using ball mill and determining Kicks, Rittinger's, Bond's coefficients, power requirement and critical speed of Ball Mill.
- X. Demonstration of colloid mill, planetary mixer, fluidized bed dryer, freeze dryer and such othermajor equipment.
- XI. Factors affecting Rate of Filtration and Evaporation (Surface area, Concentration and Thickness/ viscosity
- XII. To study the effect of time on the Rate of Crystallization.
- XIII. To calculate the uniformity Index for given sample by using Double Cone Blender.

BP401T. PHARMACEUTICAL ORGANIC CHEMISTRY –III (Theory)

45 Hours

Scope: This subject imparts knowledge on stereo-chemical aspects of organic compounds and organic reactions, important named reactions, chemistry of important hetero cyclic compounds. It also emphasizes on medicinal and other uses of organic compounds.

Objectives: At the end of the course, the student shall be able to

- 1. understand the methods of preparation and properties of organic compounds
- 2. explain the stereo chemical aspects of organic compounds and stereo chemical reactions
- 3. know the medicinal uses and other applications of organic compounds

Course Content:

Note: To emphasize on definition, types, mechanisms, examples, uses/applications

UNIT-I 10 Hours

Stereo isomerism

Optical isomerism –

Optical activity, enantiomerism, diastereoisomerism, meso compounds

Elements of symmetry, chiral and achiral molecules

DL system of nomenclature of optical isomers, sequence rules, RS system of nomenclature of optical isomers

Reactions of chiral molecules

Racemic modification and resolution of racemic mixture.

Asymmetric synthesis: partial and absolute

UNIT-II 10 Hours

Geometrical isomerism

Nomenclature of geometrical isomers (Cis Trans, EZ, Syn Anti systems)

Methods of determination of configuration of geometrical isomers.

Conformational isomerism in Ethane, n-Butane and Cyclohexane.

Stereo isomerism in biphenyl compounds (Atropisomerism) and conditions for optical activity.

Stereospecific and stereoselective reactions

UNIT-III 10 Hours

Heterocyclic compounds:

Nomenclature and classification

Synthesis, reactions and medicinal uses of following compounds/derivatives

Pyrrole, Furan, and Thiophene

Relative aromaticity and reactivity of Pyrrole, Furan and Thiophene

UNIT-IV 8 Hours

Synthesis, reactions and medicinal uses of following compounds/derivatives

Pyrazole, Imidazole, Oxazole and Thiazole.

Pyridine, Quinoline, Isoquinoline, Acridine and Indole. Basicity of pyridine

Synthesis and medicinal uses of Pyrimidine, Purine, azepines and their derivatives

UNIT-V 07 Hours

Reactions of synthetic importance

Metal hydride reduction (NaBH₄ and LiAlH₄), Clemmensen reduction, Birch reduction, Wolff Kishner reduction.

Oppenauer-oxidation and Dakin reaction.

Beckmanns rearrangement and Schmidt rearrangement.

Claisen-Schmidt condensation

Recommended Books (Latest Editions)

- 1. Organic chemistry by I.L. Finar, Volume-I & II.
- 2. A text book of organic chemistry Arun Bahl, B.S. Bahl.
- 3. Heterocyclic Chemistry by Raj K. Bansal
- 4. Organic Chemistry by Morrison and Boyd
- 5. Heterocyclic Chemistry by T.L. Gilchrist

BP402T. MEDICINAL CHEMISTRY – I (Theory)

45 Hours

Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasizes on structure activity relationships of drugs, importance of physicochemical properties and metabolism of drugs. The syllabus also emphasizes on chemical synthesis of important drugs under each class.

Objectives: Upon completion of the course the student shall be able to

- 1. understand the chemistry of drugs with respect to their pharmacological activity
- 2. understand the drug metabolic pathways, adverse effect and therapeutic value of drugs
- 3. know the Structural Activity Relationship (SAR) of different class of drugs
- 4. write the chemical synthesis of some drugs

Course Content:

Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*)

UNIT- I 10 Hours

Introduction to Medicinal Chemistry

History and development of medicinal chemistry

Physicochemical properties in relation to biological action

Ionization, Solubility, Partition Coefficient, Hydrogen bonding, Protein binding, Chelation, Bioisosterism, Optical and Geometrical isomerism.

Drug metabolism

Drug metabolism principles- Phase I and Phase II.

Factors affecting drug metabolism including stereo chemical aspects.

UNIT- II 10 Hours

Drugs acting on Autonomic Nervous System

Adrenergic Neurotransmitters:

Biosynthesis and catabolism of catecholamine.

Adrenergic receptors (Alpha & Beta) and their distribution.

Sympathomimetic agents: SAR of Sympathomimetic agents

Direct acting: Nor-epinephrine, Epinephrine, Phenylephrine*, Dopamine,

Methyldopa, Clonidine, Dobutamine, Isoproterenol, Terbutaline, Salbutamol*, Bitolterol, Naphazoline, Oxymetazoline and Xylometazoline.

- Indirect acting agents: Hydroxyamphetamine, Pseudoephedrine, Propylhexedrine.
- Agents with mixed mechanism: Ephedrine, Metaraminol.

Adrenergic Antagonists:

Alpha adrenergic blockers: Tolazoline*, Phentolamine, Phenox ybenzamine, Prazosin, Dihydroergotamine, Methysergide.

Beta adrenergic blockers: SAR of beta blockers, Propranolol*, Metibranolol, Atenolol, Betazolol, Bisoprolol, Esmolol, Metoprolol, Labetolol, Carvedilol.

UNIT-III 10 Hours

Cholinergic neurotransmitters:

Biosynthesis and catabolism of acetylcholine.

Cholinergic receptors (Muscarinic & Nicotinic) and their distribution.

Parasympathomimetic agents: SAR of Parasympathomimetic agents

Direct acting agents: Acetylcholine, Carbachol*, Bethanechol, Methacholine, Pilocarpine.

Indirect acting/ Cholinesterase inhibitors (Reversible & Irreversible): Physostigmine, Neostigmine*, Pyridostigmine, Edrophonium chloride, Tacrine hydrochloride, Ambenonium chloride, Isofluorphate, Echothiophate iodide, Parathione, Malathion.

Cholinesterase reactivator: Pralidoxime chloride.

Cholinergic Blocking agents: SAR of cholinolytic agents

Solanaceous alkaloids and analogues: Atropine sulphate, Hyoscyamine sulphate, Scopolamine hydrobromide, Homatropine hydrobromide, Ipratropium bromide*.

Synthetic cholinergic blocking agents: Tropicamide, Cyclopentolate hydrochloride, Clidinium bromide, Dicyclomine hydrochloride*, Glycopyrrolate, Methantheline bromide, Propantheline bromide, Benztropine mesylate, Orphenadrine citrate, Biperidine hydrochloride, Procyclidine hydrochloride*, Tridihexethyl chloride, Isopropamide iodide, Ethopropazine hydrochloride.

UNIT- IV 08 Hours

Drugs acting on Central Nervous System

A. Sedatives and Hypnotics:

Benzodiazepines: SAR of Benzodiazepines, Chlordiazepoxide, Diazepam*, Oxazepam, Chlorazepate, Lorazepam, Alprazolam, Zolpidem

Oxazepam, Chlorazepate, Lorazepam, Alprazolam, Zolpidem

Barbiturtes: SAR of barbiturates, Barbital*, Phenobarbital, Mephobarbital,

Amobarbital, Butabarbital, Pentobarbital, Secobarbital

Miscelleneous:

Amides & imides: Glutethmide.

Alcohol & their carbamate derivatives: Meprobomate, Ethchlorvynol.

Aldehyde & their derivatives: Triclofos sodium, Paraldehyde.

B. Antipsychotics

Phenothiazeines: SAR of Phenothiazeines - Promazine hydrochloride, Chlorpromazine hydrochloride*, Triflupromazine, Thioridazine hydrochloride, Piperacetazine hydrochloride, Prochlorperazine maleate, Triflupromazine hydrochloride.

Ring Analogues of Phenothiazeines: Chlorprothixene, Thiothixene, Loxapine succinate, Clozapine.

Fluro buterophenones: Haloperidol, Droperidol, Risperidone.

Beta amino ketones: Molindone hydrochloride.

Benzamides: Sulpieride.

C. Anticonvulsants: SAR of Anticonvulsants, mechanism of anticonvulsant

action

Barbiturates: Phenobarbitone, Methabarbital. **Hydantoins**:

Phenytoin*, Mephenytoin, Ethotoin Oxazolidine diones:

Trimethadione. Paramethadione Succinimides:

Phensuximide, Methsuximide, Ethosuximide* Urea and

monoacylureas: Phenacemide, Carbamazepine*

Benzodiazepines: Clonazepam

Miscellaneous: Primidone, Valproic acid, Gabapentin, Felbamate

UNIT – V 07 Hours

Drugs acting on Central Nervous System

General anesthetics:

Inhalation anesthetics: Halothane*, Methoxyflurane, Enflurane, Sevoflurane, Isoflurane, Desflurane.

Ultra short acting barbitutrates: Methohexital sodium*, Thiamylal sodium, Thiopental sodium.

Dissociative anesthetics: Ketamine hydrochloride.*

Narcotic and non-narcotic analgesics

Morphine and related drugs: SAR of Morphine analogues, Morphine sulphate, Codeine, Meperidine hydrochloride, Anilerdine hydrochloride, Diphenoxylate hydrochloride, Loperamide hydrochloride, Fentanyl citrate*, Methadone hydrochloride*, Propoxyphene hydrochloride, Pentazocine, Levorphanol tartarate.

Narcotic antagonists: Nalorphine hydrochloride, Levallorphan tartarate, Naloxone hydrochloride.

Anti-inflammatory agents: Sodium salicylate, Aspirin, Mefenamic acid*, Meclofenamate, Indomethacin, Sulindac, Tolmetin, Zomepriac, Diclofenac, Ketorolac, Ibuprofen*, Naproxen, Piroxicam, Phenacetin, Acetaminophen, Antipyrine, Phenylbutazone.

BP406P. MEDICINAL CHEMISTRY – I (Practical)

4 Hours/Week

I Preparation of drugs/intermediates

- 1 1,3-pyrazole
- 2 1,3-oxazole
- 3 Benzimidazole
- 4 Benztriazole
- 5 2,3- diphenyl quinoxaline
- 6 Benzocaine
- 7 Phenytoin
- 8 Phenothiazine
- 9 Barbiturate

II Assay of drugs

- 1 Chlorpromazine
- 2 Phenobarbitone
- 3 Atropine
- 4 Ibuprofen
- 5 Aspirin
- 6 Furosemide

III Determination of Partition coefficient for any two drugs

Recommended Books (Latest Editions)

- 1. Wilson and Giswold's Organic medicinal and Pharmaceutical Chemistry.
- 2. Foye's Principles of Medicinal Chemistry.
- 3. Burger's Medicinal Chemistry, Vol I to IV.
- 4. Introduction to principles of drug design- Smith and Williams.
- 5. Remington's Pharmaceutical Sciences.
- 6. Martindale's extra pharmacopoeia.

7. Organic Chemistry by I.L. Finar, Vol. II.8. The Organic Chemistry of Drug Synthesis by Lednicer, Vol. 1-5.
9. Indian Pharmacopoeia.
10. Text book of practical organic chemistry- A.I.Vogel.
10. Text book of practical organic chemistry- A.i. voget.
94

BP 403 T. PHYSICAL PHARMACEUTICS-II (Theory)

45Hours

Scope: The course deals with the various physica and physicochemical properties, and principles involved in dosage forms/formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms.

Objectives: Upon the completion of the course student shall be able to

- 1. Understand various physicochemical properties of drug molecules in the designing the dosage forms
- 2. Know the principles of chemical kinetics & to use them for stability testing nad determination of expiry date of formulations
- 3. Demonstrate use of physicochemical properties in the formulation development and evaluation of dosage forms.

Course Content:

UNIT-I 07 Hours

Colloidal dispersions: Classification of dispersed systems & their general characteristics, size & shapes of colloidal particles, classification of colloids & comparative account of their general properties. Optical, kinetic & electrical properties. Effect of electrolytes, coacervation, peptization& protective action.

UNIT-II 10 Hours

Rheology: Newtonian systems, law of flow, kinematic viscosity, effect of temperature, non-Newtonian systems, pseudoplastic, dilatant, plastic, thixotropy, thixotropy in formulation, determination of viscosity, capillary, falling Sphere, rotational viscometers

Deformation of solids: Plastic and elastic deformation, Heckel equation, Stress, Strain, Elastic Modulus

UNIT-III 10 Hours

Coarse dispersion: Suspension, interfacial properties of suspended particles, settling in suspensions, formulation of flocculated and deflocculated suspensions. Emulsions and theories of emulsification, microemulsion and multiple emulsions; Stability of emulsions, preservation of emulsions, rheological properties of emulsions and emulsion formulation by HLB method.

UNIT-IV 10Hours

Micromeretics: Particle size and distribution, mean particle size, number and weight distribution, particle number, methods for determining particle size by different methods, counting and separation method, particle shape, specific surface, methods for determining surface area, permeability, adsorption, derived properties of powders, porosity, packing arrangement, densities, bulkiness & flow properties.

UNIT-V 10 Hours

Drug stability: Reaction kinetics: zero, pseudo-zero, first & second order, units of basic rate constants, determination of reaction order. Physical and chemical factors influencing the chemical degradation of pharmaceutical product: temperature, solvent, ionic strength, dielectric constant, specific & general acid base catalysis, Simple numerical problems. Stabilization of medicinal agents against common reactions like hydrolysis & oxidation. Accelerated stability testing in expiration dating of pharmaceutical dosage forms. Photolytic degradation and its prevention

BP 407P. PHYSICAL PHARMACEUTICS- II (Practical)

3 Hrs/week

- 1. Determination of particle size, particle size distribution using sieving method
- 2. Determination of particle size, particle size distribution using Microscopic method
- 3. Determination of bulk density, true density and porosity
- 4. Determine the angle of repose and influence of lubricant on angle of repose
- 5. Determination of viscosity of liquid using Ostwald's viscometer
- 6. Determination sedimentation volume with effect of different suspending agent
- 7. Determination sedimentation volume with effect of different concentration of single suspending agent
- 8. Determination of viscosity of semisolid by using Brookfield viscometer
- 9. Determination of reaction rate constant first order.
- 10. Determination of reaction rate constant second order
- 11. Accelerated stability studies

Recommended Books: (Latest Editions)

- 1. Physical Pharmacy by Alfred Martin, Sixth edition
- 2. Experimental pharmaceutics by Eugene, Parott.
- 3. Tutorial pharmacy by Cooper and Gunn.
- 4. Stocklosam J. Pharmaceutical calculations, Lea & Febiger, Philadelphia.
- 5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, Marcel Dekkar Inc.
- 6. Liberman H.A, Lachman C, Pharmaceutical dosage forms. Disperse systems, volume 1, 2, 3. Marcel Dekkar Inc.
- 7. Physical Pharmaceutics by Ramasamy C, and Manavalan R.

BP 404 T. PHARMACOLOGY-I (Theory)

45 Hrs

Scope: The main purpose of the subject is to understand what drugs do to the living organisms and how their effects can be applied to therapeutics. The subject covers the information about the drugs like, mechanism of action, physiological and biochemical effects (pharmacodynamics) as well as absorption, distribution, metabolism and excretion (pharmacokinetics) along with the adverse effects, clinical uses, interactions, doses, contraindications and routes of administration of different classes of drugs.

Objectives: Upon completion of this course the student should be able to

- 1. Understand the pharmacological actions of different categories of drugs
- 2. Explain the mechanism of drug action at organ system/sub cellular/macromolecular levels.
- 3. Apply the basic pharmacological knowledge in the prevention and treatment of various diseases.
- 4. Observe the effect of drugs on animals by simulated experiments
- 5. Appreciate correlation of pharmacology with other bio medical sciences

Course Content:

UNIT-I 08 hours

1. General Pharmacology

- **a.** Introduction to Pharmacology- Definition, historical landmarks and scope of pharmacology, nature and source of drugs, essential drugs concept and routes of drug administration, Agonists, antagonists (competitive and non competitive), spare receptors, addiction, tolerance, dependence, tachyphylaxis, idiosyncrasy, allergy.
- **b.** Pharmacokinetics- Membrane transport, absorption, distribution, metabolism and excretion of drugs .Enzyme induction, enzyme inhibition, kinetics of elimination

UNIT-II 12 Hours

General Pharmacology

- a. Pharmacodynamics- Principles and mechanisms of drug action. Receptor theories and classification of receptors, regulation of receptors. drug receptors interactions signal transduction mechanisms, G-protein-coupled receptors, ion channel receptor, transmembrane enzyme linked receptors, transmembrane JAK-STAT binding receptor and receptors that regulate transcription factors, dose response relationship, therapeutic index, combined effects of drugs and factors modifying drug action.
- b. Adverse drug reactions.
- c. Drug interactions (pharmacokinetic and pharmacodynamic)
- d. Drug discovery and clinical evaluation of new drugs -Drug discovery phase, preclinical evaluation phase, clinical trial phase, phases of clinical trials and pharmacovigilance.

UNIT-III 10 Hours

2. Pharmacology of drugs acting on peripheral nervous system

- a. Organization and function of ANS.
- b.Neurohumoral transmission, co-transmission and classification of neurotransmitters.
- c. Parasympathomimetics, Parasympatholytics, Sympathomimetics, sympatholytics.
- d. Neuromuscular blocking agents and skeletal muscle relaxants (peripheral).
- e. Local anesthetic agents.
- f. Drugs used in myasthenia gravis and glaucoma

UNIT-IV 08 Hours

3. Pharmacology of drugs acting on central nervous system

- a. Neurohumoral transmission in the C.N.S.special emphasis on importance of various neurotransmitters like with GABA, Glutamate, Glycine, serotonin, dopamine.
- b. General anesthetics and pre-anesthetics.
- c. Sedatives, hypnotics and centrally acting muscle relaxants.
- d. Anti-epileptics
- e. Alcohols and disulfiram

UNIT-V 07 Hours

3. Pharmacology of drugs acting on central nervous system

- a. Psychopharmacological agents: Antipsychotics, antidepressants, anti-anxiety agents, anti-manics and hallucinogens.
- b. Drugs used in Parkinsons disease and Alzheimer's disease.
- c. CNS stimulants and nootropics.
- d. Opioid analgesics and antagonists
- e. Drug addiction, drug abuse, tolerance and dependence.

BP 408 P.PHARMACOLOGY-I (Practical)

4Hrs/Week

- 1. Introduction to experimental pharmacology.
- 2. Commonly used instruments in experimental pharmacology.
- 3. Study of common laboratory animals.
- 4. Maintenance of laboratory animals as per CPCSEA guidelines.
- 5. Common laboratory techniques. Blood withdrawal, serum and plasma separation, anesthetics and euthanasia used for animal studies.
- 6. Study of different routes of drugs administration in mice/rats.
- 7. Study of effect of hepatic microsomal enzyme inducers on the phenobarbitone sleeping time in mice.
- 8. Effect of drugs on ciliary motility of frog oesophagus
- 9. Effect of drugs on rabbit eye.
- 10. Effects of skeletal muscle relaxants using rota-rod apparatus.
- 11. Effect of drugs on locomotor activity using actophotometer.
- 12. Anticonvulsant effect of drugs by MES and PTZ method.
- 13. Study of stereotype and anti-catatonic activity of drugs on rats/mice.
- 14. Study of anxiolytic activity of drugs using rats/mice.
- 15. Study of local anesthetics by different methods

Note: All laboratory techniques and animal experiments are demonstrated by simulated experiments by softwares and videos

Recommended Books (Latest Editions)

- 1. Rang H. P., Dale M. M., Ritter J. M., Flower R. J., Rang and Dale's Pharmacology, Churchil Livingstone Elsevier
- 2. Katzung B. G., Masters S. B., Trevor A. J., Basic and clinical pharmacology, Tata Mc Graw-Hill
- 3. Goodman and Gilman's, The Pharmacological Basis of Therapeutics
- 4. Marry Anne K. K., Lloyd Yee Y., Brian K. A., Robbin L.C., Joseph G. B., Wayne A. K., Bradley R.W., Applied Therapeutics, The Clinical use of Drugs, The Point Lippincott Williams & Wilkins
- 5. Mycek M.J, Gelnet S.B and Perper M.M. Lippincott's Illustrated Reviews-Pharmacology

- 6. K.D.Tripathi. Essentials of Medical Pharmacology, JAYPEE Brothers Medical Publishers (P) Ltd, New Delhi.
- 7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher
- 8. Modern Pharmacology with clinical Applications, by Charles R.Craig& Robert,
- 9. Ghosh MN. Fundamentals of Experimental Pharmacology. Hilton & Company, Kolkata.
- 10. Kulkarni SK. Handbook of experimental pharmacology. VallabhPrakashan,

BP 405 T.PHARMACOGNOSY AND PHYTOCHEMISTRY I (Theory) 45 Hours

Scope: The subject involves the fundamentals of Pharmacognosy like scope, classification of crude drugs, their identification and evaluation, phytochemicals present in them and their medicinal properties.

Objectives: Upon completion of the course, the student shall be able

- 1. to know the techniques in the cultivation and production of crude drugs
- 2. to know the crude drugs, their uses and chemical nature
- 3. know the evaluation techniques for the herbal drugs
- 4. to carry out the microscopic and morphological evaluation of crude drugs

Course Content:

UNIT-I 10 Hours

Introduction to Pharmacognosy:

- (a) Definition, history, scope and development of Pharmacognosy
- (b) Sources of Drugs Plants, Animals, Marine & Tissue culture
- (c) Organized drugs, unorganized drugs (dried latex, dried juices, dried extracts, gums and mucilages, oleoresins and oleo- gum -resins).

Classification of drugs:

Alphabetical, morphological, taxonomical, chemical, pharmacological, chemo and sero taxonomical classification of drugs

Quality control of Drugs of Natural Origin:

Adulteration of drugs of natural origin. Evaluation by organoleptic, microscopic, physical, chemical and biological methods and properties.

Quantitative microscopy of crude drugs including lycopodium spore method, leafconstants, camera lucida and diagrams of microscopic objects to scale with camera lucida.

UNIT-II 10 Hours

Cultivation, Collection, Processing and storage of drugs of natural origin:

Cultivation and Collection of drugs of natural origin

Factors influencing cultivation of medicinal plants.

Plant hormones and their applications.

Polyploidy, mutation and hybridization with reference to medicinal plants

Conservation of medicinal plants

UNIT-III 07 Hours

Plant tissue culture:

Historical development of plant tissue culture, types of cultures, Nutritional requirements, growth and their maintenance.

Applications of plant tissue culture in pharmacognosy.

Edible vaccines

UNIT IV 10 Hours

Pharmacognosy in various systems of medicine:

Role of Pharmacognosy in allopathy and traditional systems of medicine namely, Ayurveda, Unani, Siddha, Homeopathy and Chinese systems of medicine.

Introduction to secondary metabolites:

Definition, classification, properties and test for identification of Alkaloids, Glycosides, Flavonoids, Tannins, Volatile oil and Resins

UNIT V 08 Hours

Study of biological source, chemical nature and uses of drugs of natural origin containing following drugs

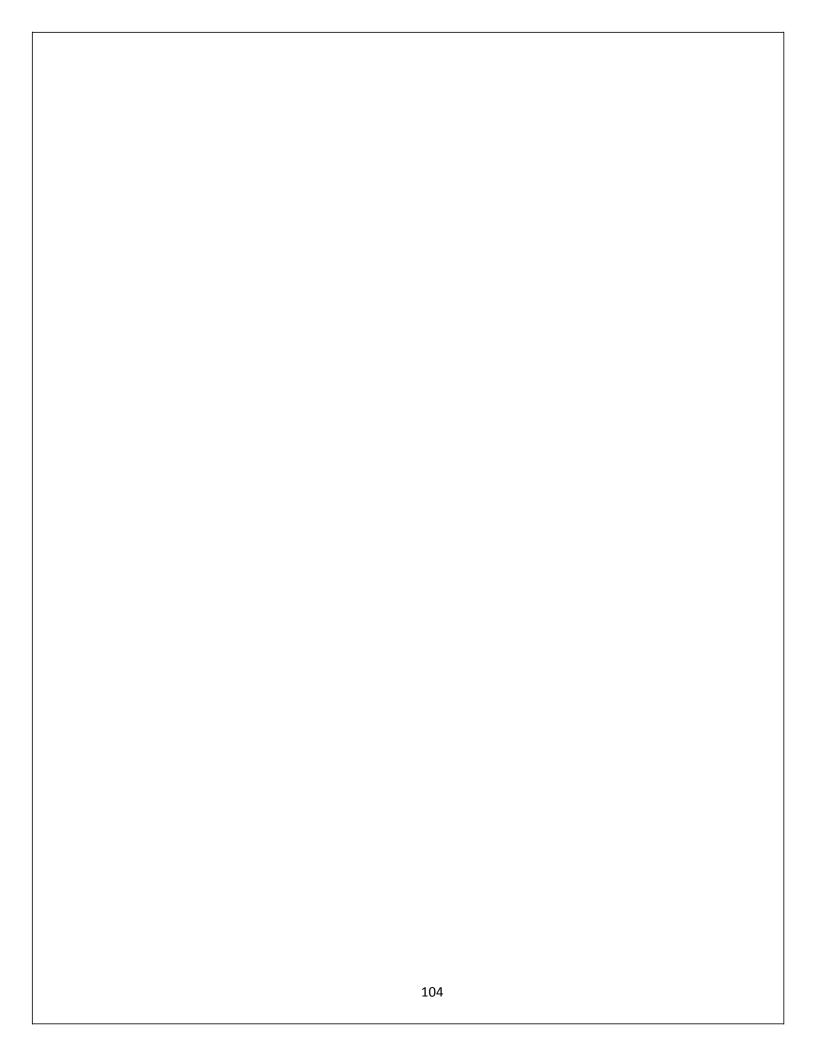
Plant Products:

Fibers - Cotton, Jute, Hemp

Hallucinogens, Teratogens, Natural allergens

Primary metabolites:

General introduction, detailed study with respect to chemistry, sources, preparation, evaluation, preservation, storage, therapeutic used and commercial utility as Pharmaceutical Aids and/or Medicines for the following Primary metabolites:

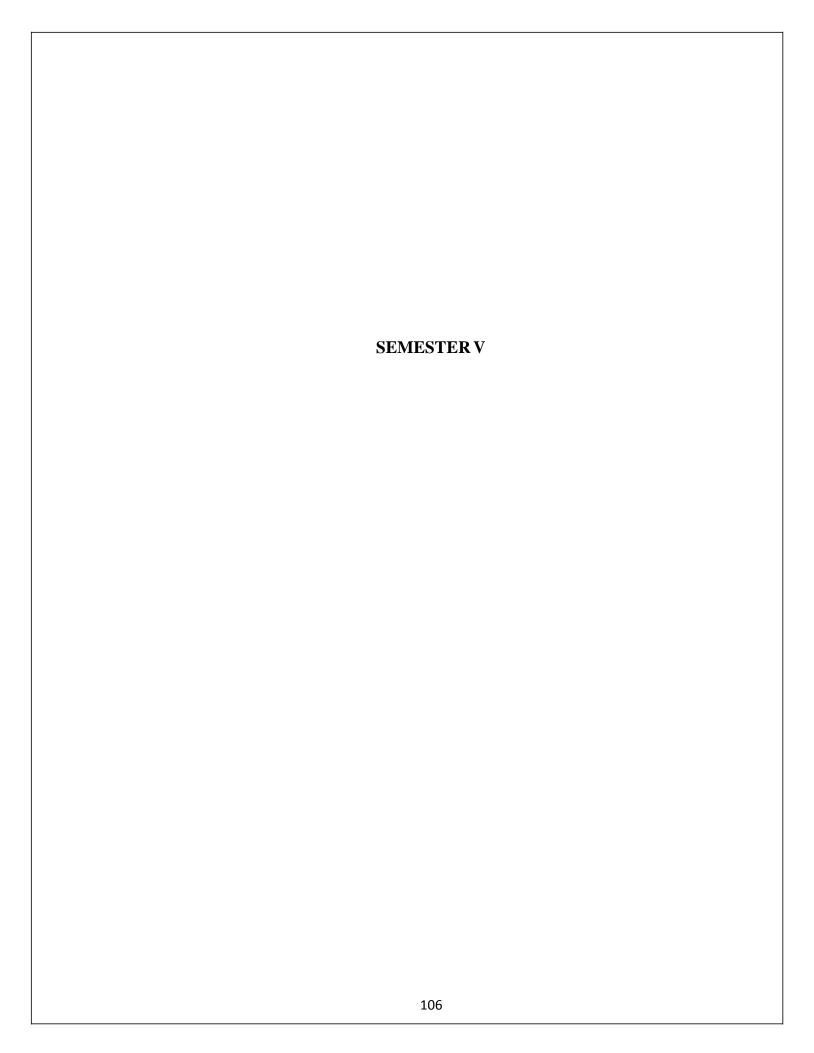

Carbohydrates: Acacia, Agar, Tragacanth, Honey

Proteins and Enzymes: Gelatin, casein, proteolytic enzymes (Papain, bromelain, serratiopeptidase, urokinase, streptokinase, pepsin).

Lipids(Waxes, fats, fixed oils): Castor oil, Chaulmoogra oil, Wool Fat, Bees Wax

Marine Drugs:

Novel medicinal agents from marine sources


BP408 P. PHARMACOGNOSY AND PHYTOCHEMISTRY I (Practical)

4 Hours/Week

- 1. Analysis of crude drugs by chemical tests: (i)Tragaccanth (ii) Acacia (iii)Agar (iv) Gelatin (v) starch (vi) Honey (vii) Castor oil
- 2. Determination of stomatal number and index
- 3. Determination of vein islet number, vein islet termination and paliside ratio.
- 4. Determination of size of starch grains, calcium oxalate crystals by eye piece micrometer
- 5. Determination of Fiber length and width
- 6. Determination of number of starch grains by Lycopodium spore method
- 7. Determination of Ash value
- 8. Determination of Extractive values of crude drugs
- 9. Determination of moisture content of crude drugs
- 10. Determination of swelling index and foaming

Recommended Books: (Latest Editions)

- 1. W.C.Evans, Trease and Evans Pharmacognosy, 16th edition, W.B. Sounders & Co., London, 2009.
- 2. Tyler, V.E., Brady, L.R. and Robbers, J.E., Pharmacognosy, 9th Edn., Lea and Febiger, Philadelphia, 1988.
- 3. Text Book of Pharmacognosy by T.E. Wallis
- 4. Mohammad Ali. Pharmacognosy and Phytochemistry, CBS Publishers & Distribution, New Delhi.
- 5. Text book of Pharmacognosy by C.K. Kokate, Purohit, Gokhlae (2007), 37th Edition, Nirali Prakashan, New Delhi.
- 6. Herbal drug industry by R.D. Choudhary (1996), Ist Edn, Eastern Publisher, New Delhi.
- 7. Essentials of Pharmacognosy, Dr.SH.Ansari, IInd edition, Birla publications, New Delhi, 2007
- 8. Practical Pharmacognosy: C.K. Kokate, Purohit, Gokhlae
- 9. Anatomy of Crude Drugs by M.A. Iyengar

BP501T. MEDICINAL CHEMISTRY – II (Theory)

45 Hours

Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasizes on structure activity relationships of drugs, importance of physicochemical properties and metabolism of drugs. The syllabus also emphasizes on chemical synthesis of important drugs under each class.

Objectives: Upon completion of the course the student shall be able to

- 1. Understand the chemistry of drugs with respect to their pharmacological activity
- 2. Understand the drug metabolic pathways, adverse effect and therapeutic value of drugs
- 3. Know the Structural Activity Relationship of different class of drugs
- 4. Study the chemical synthesis of selected drugs

Course Content:

Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*)

UNIT- I 10 Hours

Antihistaminic agents: Histamine, receptors and their distribution in the humanbody

H₁-antagonists: Diphenhydramine hydrochloride*, Dimenhydrinate, Doxylamines cuccinate, Clemastine fumarate, Diphenylphyraline hydrochloride, Tripelenamine hydrochloride, Chlorcyclizine hydrochloride, Meclizine hydrochloride, Buclizine hydrochloride, Chlorpheniramine maleate, Triprolidine hydrochloride*, Phenidamine tartarate, Promethazine hydrochloride*, Trimeprazine tartrate, Cyproheptadine hydrochloride, Azatidine maleate. Astemizole, Loratadine, Cetirizine, Levocetrazine Cromolyn sodium

H₂-antagonists: Cimetidine*, Famotidine, Ranitidin.

Gastric Proton pump inhibitors: Omeprazole, Lansoprazole, Rabeprazole, Pantoprazole

Anti-neoplastic agents:

Alkylating agents: Meclorethamine*, Cyclophosphamide, Melphalan,

Chlorambucil, Busulfan, Thiotepa

Antimetabolites: Mercaptopurine*, Thioguanine, Fluorouracil, Floxuridine, Cytarabine, Methotrexate*, Azathioprine

Antibiotics: Dactinomycin, Daunorubicin, Doxorubicin, Bleomycin **Plant products:** Etoposide, Vinblastin sulphate, Vincristin sulphate

Miscellaneous: Cisplatin, Mitotane.

UNIT – II 10 Hours

Anti-anginal:

Vasodilators: Amyl nitrite, Nitroglycerin*, Pentaerythritol tetranitrate, Isosorbide dinitrite*, Dipyridamole.

Calcium channel blockers: Verapamil, Bepridil hydrochloride, Diltiazem hydrochloride, Nifedipine, Amlodipine, Felodipine, Nicardipine, Nimodipine.

Diuretics:

Carbonic anhydrase inhibitors: Acetazolamide*, Methazolamide, Dichlorphenamide.

Thiazides: Chlorthiazide*, Hydrochlorothiazide, Hydroflumethiazide, Cyclothiazide,

Loop diuretics: Furosemide*, Bumetanide, Ethacrynic acid.

Potassium sparing Diuretics: Spironolactone, Triamterene, Amiloride.

Osmotic Diuretics: Mannitol

Anti-hypertensive Agents: Timolol, Captopril, Lisinopril, Enalapril, Benazepril hydrochloride, Quinapril hydrochloride, Methyldopate hydrochloride,* Clonidine hydrochloride, Guanethidine monosulphate, Guanabenz acetate, Sodium nitroprusside, Diazoxide, Minoxidil, Reserpine, Hydralazine hydrochloride.

UNIT- III 10 Hours

Anti-arrhythmic Drugs: Quinidine sulphate, Procainamide hydrochloride, Disopyramide phosphate*, Phenytoin sodium, Lidocaine hydrochloride, Tocainide hydrochloride, Mexiletine hydrochloride, Lorcainide hydrochloride, Amiodarone, Sotalol.

Anti-hyperlipidemic agents: Clofibrate, Lovastatin, Cholesteramine and Cholestipol

Coagulant & Anticoagulants: Menadione, Acetomenadione, Warfarin*, Anisindione, clopidogrel

Drugs used in Congestive Heart Failure: Digoxin, Digitoxin, Nesiritide, Bosentan, Tezosentan.

UNIT- IV 08 Hours

Drugs acting on Endocrine system

Nomenclature, Stereochemistry and metabolism of steroids

Sex hormones: Testosterone, Nandralone, Progestrones, Oestriol, Oestradiol,

Oestrione, Diethyl stilbestrol.

Drugs for erectile dysfunction: Sildenafil, Tadalafil.

Oral contraceptives: Mifepristone, Norgestril, Levonorgestrol

Corticosteroids: Cortisone, Hydrocortisone, Prednisolone, Betamethasone,

Dexamethasone

Thyroid and antithyroid drugs: L-Thyroxine, L-Thyronine, Propylthiouracil,

Methimazole.

UNIT – V 07 Hours

Antidiabetic agents:

Insulin and its preparations

Sulfonyl ureas: Tolbutamide*, Chlorpropamide, Glipizide, Glimepiride.

Biguanides: Metformin.

Thiazolidinediones: Pioglitazone, Rosiglitazone.

Meglitinides: Repaglinide, Nateglinide.

Glucosidase inhibitors: Acrabose, Voglibose.

Local Anesthetics: SAR of Local anesthetics

Benzoic Acid derivatives; Cocaine, Hexylcaine, Meprylcaine, Cyclomethycaine, Piperocaine.

Amino Benzoic acid derivatives: Benzocaine*, Butamben, Procaine*, Butacaine, Propoxycaine, Tetracaine, Benoxinate.

Lidocaine/Anilide derivatives: Lignocaine, Mepivacaine, Prilocaine, Etidocaine.

Miscellaneous: Phenacaine, Diperodon, Dibucaine.*

Recommended Books (Latest Editions)

- 1. Wilson and Giswold's Organic medicinal and Pharmaceutical Chemistry.
- 2. Foye's Principles of Medicinal Chemistry.
- 3. Burger's Medicinal Chemistry, Vol I to IV.
- 4. Introduction to principles of drug design- Smith and Williams.
- 5. Remington's Pharmaceutical Sciences.
- 6. Martindale's extra pharmacopoeia.
- 7. Organic Chemistry by I.L. Finar, Vol. II.
- 8. The Organic Chemistry of Drug Synthesis by Lednicer, Vol. 1to 5.
- 9. Indian Pharmacopoeia.
- 10. Text book of practical organic chemistry- A.I. Vogel.

BP 502 T. Industrial PharmacyI (Theory)

45 Hours

Scope: Course enables the student to understand and appreciate the influence of pharmaceutical additives and various pharmaceutical dosage forms on the performance of the drug product.

Objectives: Upon completion of the course the student shall be able to

- 1. Know the various pharmaceutical dosage forms and their manufacturing techniques.
- 2. Know various considerations in development of pharmaceutical dosage forms
- 3. Formulate solid, liquid and semisolid dosage forms and evaluate them for their quality

Course content:

3 hours/ week

UNIT-I 07 Hours

Preformulation Studies: Introduction to preformulation, goals and objectives, study of physicochemical characteristics of drug substances.

- a. Physical properties: Physical form (crystal & amorphous), particle size, shape, flow properties, solubility profile (pKa, pH, partition coefficient), polymorphism
- b. Chemical Properties: Hydrolysis, oxidation, reduction, racemisation, polymerizationBCS classification of drugs & its significant

Application of preformulation considerations in the development of solid, liquid oral and parenteral dosage forms and its impact on stability of dosage forms.

UNIT-II 10 Hours

Tablets:

- a. Introduction, ideal characteristics of tablets, classification of tablets. Excipients, Formulation of tablets, granulation methods, compression and processing problems. Equipments and tablet tooling.
- b. Tablet coating: Types of coating, coating materials, formulation of coating composition, methods of coating, equipment employed and defects in coating.
- c. Quality control tests: In process and finished product tests

Liquid orals: Formulation and manufacturing consideration of syrups and elixirs suspensions and emulsions; Filling and packaging; evaluation of liquid orals official in pharmacopoeia

UNIT-III 08 Hours

Capsules:

a. *Hard gelatin capsules:* Introduction, Production of hard gelatin capsule shells. size of capsules, Filling, finishing and special techniques of formulation of hard gelatin capsules, manufacturing defects. In process and final product quality control tests for capsules.

b. *Soft gelatin capsules:* Nature of shell and capsule content, size of capsules, importance of base adsorption and minim/gram factors, production, in process and final product quality control tests. Packing, storage and stability testing of soft gelatin capsules and their applications.

Pellets: Introduction, formulation requirements, pelletization process, equipments for manufacture of pellets

UNIT-IV 10 Hours

Parenteral Products:

- a. Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity
- b. Production procedure, production facilities and controls, aseptic processing
- c. Formulation of injections, sterile powders, large volume parenterals and lyophilized products.
- d. Containers and closures selection, filling and sealing of ampoules, vials and infusion fluids. Quality control tests of parenteral products.

Ophthalmic Preparations: Introduction, formulation considerations; formulation of eye drops, eye ointments and eye lotions; methods of preparation; labeling, containers; evaluation of ophthalmic preparations

UNIT-V 10 Hours

Cosmetics: Formulation and preparation of the following cosmetic preparations: lipsticks, shampoos, cold cream and vanishing cream, tooth pastes, hair dyes and sunscreens.

Pharmaceutical Aerosols: Definition, propellants, containers, valves, types of aerosol systems; formulation and manufacture of aerosols; Evaluation of aerosols; Quality control and stability studies.

Packaging Materials Science: Materials used for packaging of pharmaceutical products, factors influencing choice of containers, legal and official requirements for containers, stability aspects of packaging materials, quality control tests.

BP 506 P. Industrial PharmacyI (Practical)

4 Hours/week

- 1. Preformulation studies on paracetamol/asparin/or any other drug
- 2. Preparation and evaluation of Paracetamol tablets
- 3. Preparation and evaluation of Aspirin tablets
- 4. Coating of tablets- film coating of tables/granules
- 5. Preparation and evaluation of Tetracycline capsules
- 6. Preparation of Calcium Gluconate injection
- 7. Preparation of Ascorbic Acid injection
- 8. Qulaity control test of (as per IP) marketed tablets and capsules
- 9. Preparation of Eye drops/ and Eye ointments
- 10. Preparation of Creams (cold / vanishing cream)
- 11. Evaluation of Glass containers (as per IP)

Recommended Books: (Latest Editions)

- 1. Pharmaceutical dosage forms Tablets, volume 1 -3 by H.A. Liberman, Leon Lachman &J.B.Schwartz
- 2. Pharmaceutical dosage form Parenteral medication vol- 1&2 by Liberman & Lachman
- 3. Pharmaceutical dosage form disperse system VOL-1 by Liberman & Lachman
- 4. Modern Pharmaceutics by Gilbert S. Banker & C.T. Rhodes, 3rd Edition
- 5. Remington: The Science and Practice of Pharmacy, 20th edition Pharmaceutical Science (RPS)
- 6. Theory and Practice of Industrial Pharmacy by Liberman & Lachman
- 7. Pharmaceutics- The science of dosage form design by M.E.Aulton, Churchill livingstone, Latest edition
- 8. Introduction to Pharmaceutical Dosage Forms by H. C.Ansel, Lea &Febiger, Philadelphia, 5thedition, 2005
- 9. Drug stability Principles and practice by Cartensen & C.J. Rhodes, 3rd Edition, Marcel Dekker Series, Vol 107.

BP503.T. PHARMACOLOGY-II (Theory)

45 Hours

Scope: This subject is intended to impart the fundamental knowledge on various aspects (classification, mechanism of action, therapeutic effects, clinical uses, side effects and contraindications) of drugs acting on different systems of body and in addition, emphasis on the basic concepts of bioassay.

Objectives: Upon completion of this course the student should be able to

- 1. Understand the mechanism of drug action and its relevance in the treatment of different diseases
- 2. Demonstrate isolation of different organs/tissues from the laboratory animals by simulated experiments
- 3. Demonstrate the various receptor actions using isolated tissue preparation
- 4. Appreciate correlation of pharmacology with related medical sciences

Course Content:

UNIT-I 10hours

1. Pharmacology of drugs acting on cardio vascular system

- a. Introduction to hemodynamic and electrophysiology of heart.
- b. Drugs used in congestive heart failure
- c. Anti-hypertensive drugs.
- d. Anti-anginal drugs.
- e. Anti-arrhythmic drugs.
- f. Anti-hyperlipidemic drugs.

UNIT-II 10hours

1. Pharmacology of drugs acting on cardio vascular system

- a. Drug used in the therapy of shock.
- b. Hematinics, coagulants and anticoagulants.
- c. Fibrinolytics and anti-platelet drugs
- d. Plasma volume expanders

2. Pharmacology of drugs acting on urinary system

- a. Diuretics
- b. Anti-diuretics.

UNIT-III 10hours

3. Autocoids and related drugs

- a. Introduction to autacoids and classification
- b. Histamine, 5-HT and their antagonists.
- c. Prostaglandins, Thromboxanes and Leukotrienes.
- d. Angiotensin, Bradykinin and Substance P.
- e. Non-steroidal anti-inflammatory agents
- f. Anti-gout drugs
- g. Antirheumatic drugs

UNIT-IV 08hours

5. Pharmacology of drugs acting on endocrine system

- a. Basic concepts in endocrine pharmacology.
- b. Anterior Pituitary hormones- analogues and their inhibitors.
- c. Thyroid hormones- analogues and their inhibitors.
- d. Hormones regulating plasma calcium level- Parathormone, Calcitonin and Vitamin-D.
- d. Insulin, Oral Hypoglycemic agents and glucagon.
- e. ACTH and corticosteroids.

UNIT-V 07hours

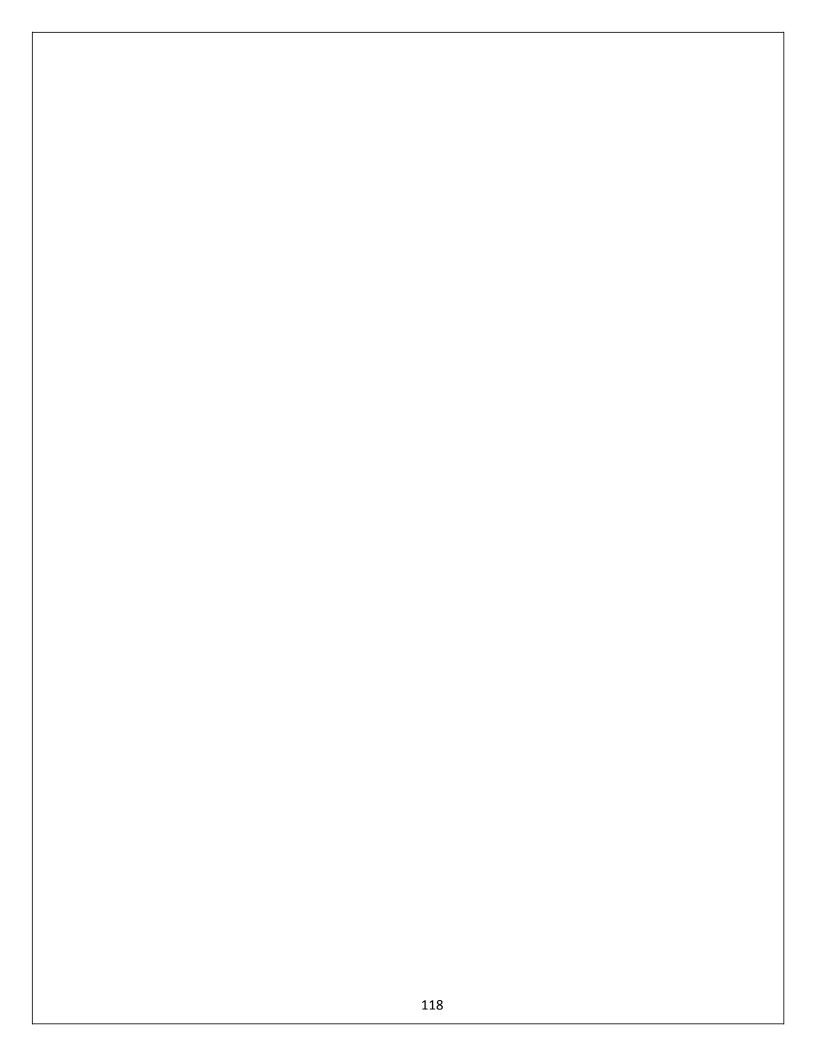
5. Pharmacology of drugs acting on endocrine system

- a. Androgens and Anabolic steroids.
- b. Estrogens, progesterone and oral contraceptives.
- c. Drugs acting on the uterus.

6. Bioassay

- a. Principles and applications of bioassay.
- b. Types of bioassay
- c. Bioassay of insulin, oxytocin, vasopressin, ACTH,d-tubocurarine,digitalis, histamine and 5-HT

BP 507 P. PHARMACOLOGY-II (Practical)


4Hrs/Week

- 1. Introduction to *in-vitro* pharmacology and physiological salt solutions.
- 2. Effect of drugs on isolated frog heart.
- 3. Effect of drugs on blood pressure and heart rate of dog.
- 4. Study of diuretic activity of drugs using rats/mice.
- 5. DRC of acetylcholine using frog rectus abdominis muscle.
- 6. Effect of physostigmine and atropine on DRC of acetylcholine using frog rectus abdominis muscle and rat ileum respectively.
- 7. Bioassay of histamine using guinea pig ileum by matching method.
- 8. Bioassay of oxytocin using rat uterine horn by interpolation method.
- 9. Bioassay of serotonin using rat fundus strip by three point bioassay.
- 10. Bioassay of acetylcholine using rat ileum/colon by four point bioassay.
- 11. Determination of PA₂ value of prazosin using rat anococcygeus muscle (by Schilds plot method).
- 12. Determination of PD₂ value using guinea pig ileum.
- 13. Effect of spasmogens and spasmolytics using rabbit jejunum.
- 14. Anti-inflammatory activity of drugs using carrageenan induced paw-edema model.
- 15. Analgesic activity of drug using central and peripheral methods

Note: All laboratory techniques and animal experiments are demonstrated by simulated experiments by softwares and videos

Recommended Books (Latest Editions)

- 1. Rang H. P., Dale M. M., Ritter J. M., Flower R. J., Rang and Dale's Pharmacology, Churchil Livingstone Elsevier
- 2. Katzung B. G., Masters S. B., Trevor A. J., Basic and clinical pharmacology, Tata Mc Graw-Hill.
- 3. Goodman and Gilman's, The Pharmacological Basis of Therapeutics
- 4. Marry Anne K. K., Lloyd Yee Y., Brian K. A., Robbin L.C., Joseph G. B., Wayne A. K., Bradley R.W., Applied Therapeutics, The Clinical use of Drugs, The Point Lippincott Williams & Wilkins.
- Mycek M.J, Gelnet S.B and Perper M.M. Lippincott's Illustrated Reviews-Pharmacology.
- 6. K.D.Tripathi. Essentials of Medical Pharmacology, , JAYPEE Brothers Medical Publishers (P) Ltd, New Delhi.
- 7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher
- 8. Modern Pharmacology with clinical Applications, by Charles R.Craig& Robert.
- 9. Ghosh MN. Fundamentals of Experimental Pharmacology. Hilton & Company, Kolkata.
- 10. Kulkarni SK. Handbook of experimental pharmacology. Vallabh Prakashan.

BP504 T. PHARMACOGNOSY AND PHYTOCHEMISTRY II (Theory) 45Hours

Scope: The main purpose of subject is to impart the students the knowledge of how the secondary metabolites are produced in the crude drugs, how to isolate and identify and produce them industrially. Also this subject involves the study of producing the plants and phytochemicals through plant tissue culture, drug interactions and basic principles of traditional system of medicine

Objectives: Upon completion of the course, the student shall be able

- 1. to know the modern extraction techniques, characterization and identification of the herbal drugs and phytoconstituents
- 2. to understand the preparation and development of herbal formulation.
- 3. to understand the herbal drug interactions
- 4. to carryout isolation and identification of phytoconstituents

Course Content:

UNIT-I 7 Hours

Metabolic pathways in higher plants and their determination

a) Brief study of basic metabolic pathways and formation of different secondary metabolites through these pathways- Shikimic acid pathway, Acetate pathways and Amino acid pathway.

b) Study of utilization of radioactive isotopes in the investigation of Biogenetic studies.

UNIT-II 14 Hours

General introduction, composition, chemistry & chemical classes, biosources, therapeutic uses and commercial applications of following secondary metabolites:

Alkaloids: Vinca, Rauwolfia, Belladonna, Opium, Phenylpropanoids and Flavonoids: Lignans, Tea, Ruta

Steroids, Cardiac Glycosides & Triterpenoids: Liquorice, Dioscorea, Digitalis

Volatile oils: Mentha, Clove, Cinnamon, Fennel, Coriander,

Tannins: Catechu, Pterocarpus

Resins: Benzoin, Guggul, Ginger, Asafoetida, Myrrh, Colophony

Glycosides: Senna, Aloes, Bitter Almond

Iridoids, Other terpenoids & Naphthaquinones: Gentian, Artemisia, taxus, carotenoids

UNIT-III 06 Hours

Isolation, Identification and Analysis of Phytoconstituents

a) Terpenoids: Menthol, Citral, Artemisin

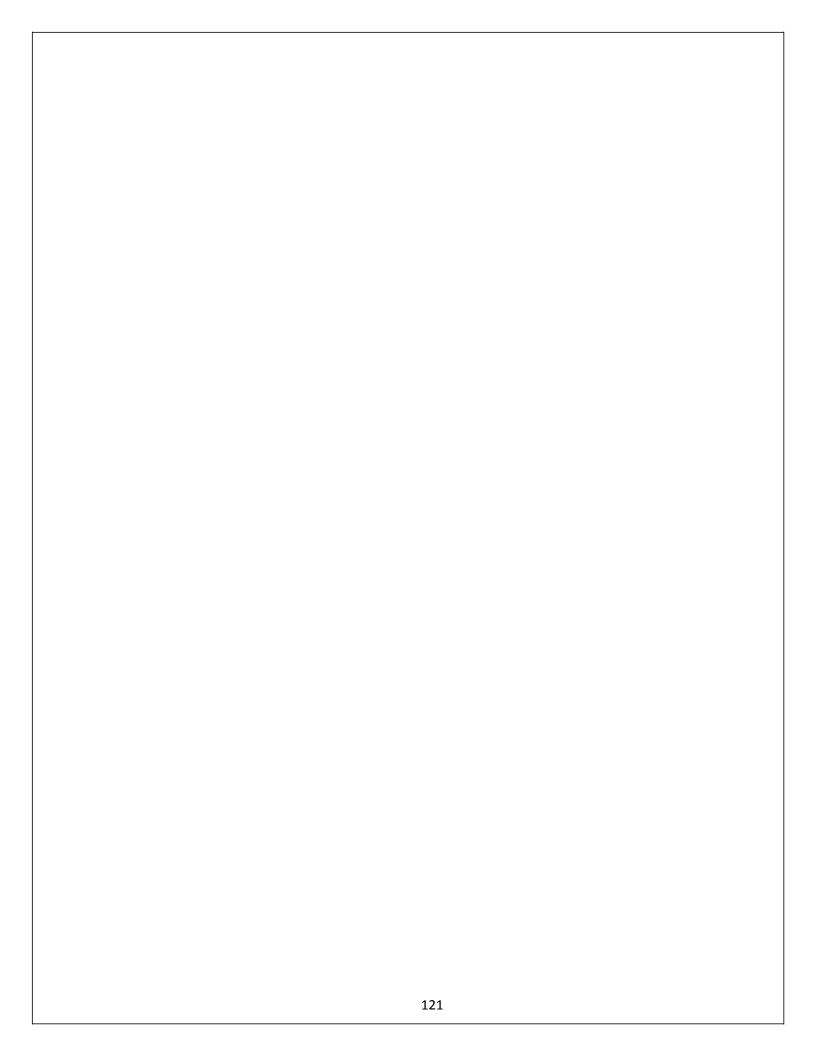
- b) Glycosides: Glycyrhetinic acid & Rutin
- c) Alkaloids: Atropine, Quinine, Reserpine, Caffeine
- d) Resins: Podophyllotoxin, Curcumin

UNIT-IV 10 Hours

Industrial production, estimation and utilization of the following phytoconstituents: Forskolin, Sennoside, Artemisinin, Diosgenin, Digoxin, Atropine, Podophyllotoxin, Caffeine, Taxol, Vincristine and Vinblastine

UNIT V 8 Hours

Basics of Phytochemistry


Modern methods of extraction, application of latest techniques like Spectroscopy, chromatography and electrophoresis in the isolation, purification and identification of crude drugs.

BP 508 P. PHARMACOGNOSY AND PHYTOCHEMISTRY II (Practical) 4 Hours/Week

- 1. Morphology, histology and powder characteristics & extraction & detection of: Cinchona, Cinnamon, Senna, Clove, Ephedra, Fennel and Coriander
- 2. Exercise involving isolation & detection of active principles
 - a. Caffeine from tea dust.
 - b. Diosgenin from Dioscorea
 - c. Atropine from Belladonna
 - d. Sennosides from Senna
- 3. Separation of sugars by Paper chromatography
- 4. TLC of herbal extract
- 5. Distillation of volatile oils and detection of phytoconstitutents by TLC
- 6. Analysis of crude drugs by chemical tests: (i) Asafoetida (ii) Benzoin (iii) Colophony (iv) Aloes (v) Myrrh

Recommended Books: (Latest Editions)

- 1. W.C.Evans, Trease and Evans Pharmacognosy, 16th edition, W.B. Sounders & Co., London, 2009.
- 2. Mohammad Ali. Pharmacognosy and Phytochemistry, CBS Publishers & Distribution, New Delhi.
- 3. Text book of Pharmacognosy by C.K. Kokate, Purohit, Gokhlae (2007), 37th Edition, Nirali Prakashan, New Delhi.
- 4. Herbal drug industry by R.D. Choudhary (1996), Ist Edn, Eastern Publisher, New Delhi
- 5. Essentials of Pharmacognosy, Dr.SH.Ansari, IInd edition, Birla publications, New Delhi, 2007
- 6. Herbal Cosmetics by H.Pande, Asia Pacific Business press, Inc, New Delhi.
- 7. A.N. Kalia, Textbook of Industrial Pharmacognosy, CBS Publishers, New Delhi, 2005.
- 8. R Endress, Plant cell Biotechnology, Springer-Verlag, Berlin, 1994.
- 9. Pharmacognosy & Pharmacobiotechnology, James Bobbers, Marilyn KS, VE Tylor.
- 10. The formulation and preparation of cosmetic, fragrances and flavours.
- 11. Remington's Pharmaceutical sciences.
- 12. Text Book of Biotechnology by Vyas and Dixit.
- 13. Text Book of Biotechnology by R.C. Dubey.

BP 505 T. PHARMACEUTICAL JURISPRUDENCE (Theory)

45 Hours

Scope: This course is designed to impart basic knowledge on important legislations related to the profession of pharmacy in India.

Objectives: Upon completion of the course, the student shall be able to understand:

- 1. The Pharmaceutical legislations and their implications in the development and marketing of pharmaceuticals.
- 2. Various Indian pharmaceutical Acts and Laws
- 3. The regulatory authorities and agencies governing the manufacture and sale of pharmaceuticals
- 4. The code of ethics during the pharmaceutical practice

Course Content:

UNIT-I 10 Hours

Drugs and Cosmetics Act, 1940 and its rules 1945:

Objectives, Definitions, Legal definitions of schedules to the Act and Rules

Import of drugs – Classes of drugs and cosmetics prohibited from import, Import under license or permit. Offences and penalties.

Manufacture of drugs – Prohibition of manufacture and sale of certain drugs,

Conditions for grant of license and conditions of license for manufacture of drugs, Manufacture of drugs for test, examination and analysis, manufacture of new drug, loan license and repacking license.

UNIT-II 10 Hours

Drugs and Cosmetics Act, 1940 and its rules 1945.

Detailed study of Schedule G, H, M, N, P,T,U, V, X, Y, Part XII B, Sch F & DMR (OA)

Sale of Drugs – Wholesale, Retail sale and Restricted license. Offences and penalties

Labeling & Packing of drugs- General labeling requirements and specimen labels for drugs and cosmetics, List of permitted colors. Offences and penalties.

Administration of the Act and Rules – Drugs Technical Advisory Board, Central drugs Laboratory, Drugs Consultative Committee, Government drug analysts, Licensing authorities, controlling authorities, Drugs Inspectors

UNIT-III 10 Hours

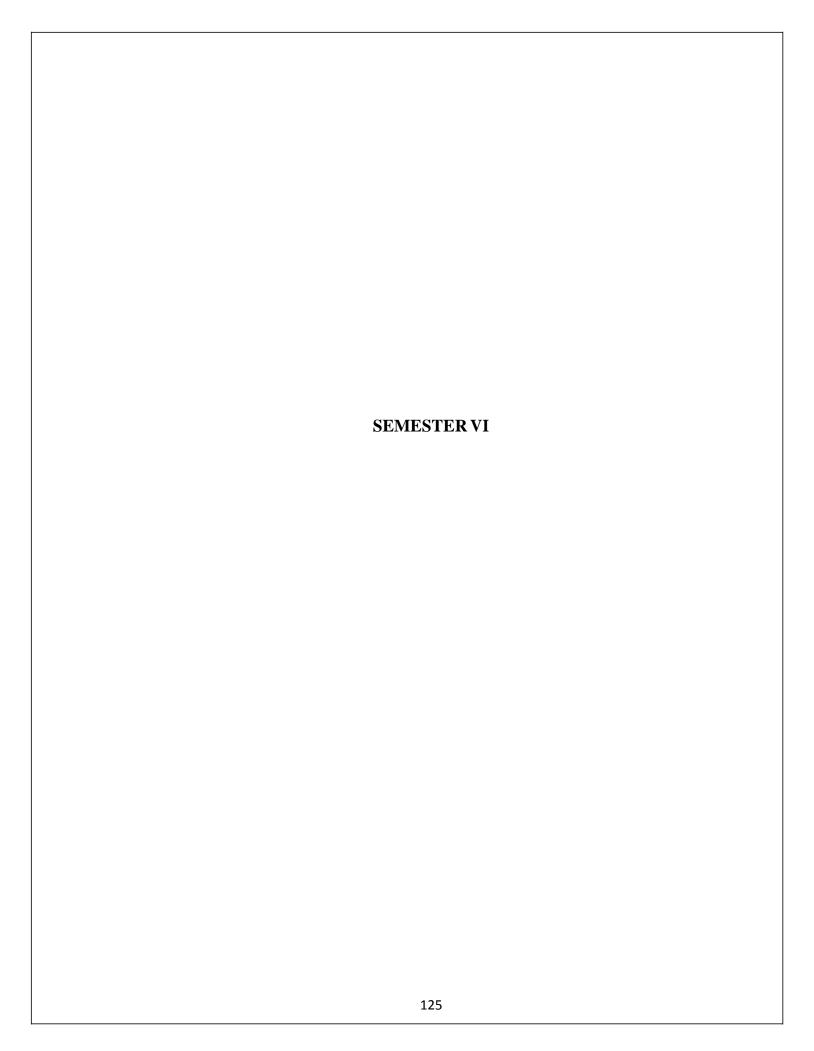
• **Pharmacy Act** –**1948**: Objectives, Definitions, Pharmacy Council of India; its constitution and functions, Education Regulations, State and Joint state pharmacy councils; constitution and functions, Registration of Pharmacists, Offences and

Penalties

- Medicinal and Toilet Preparation Act –1955: Objectives, Definitions, Licensing, Manufacture In bond and Outside bond, Export of alcoholic preparations, Manufacture of Ayurvedic, Homeopathic, Patent & Proprietary Preparations. Offences and Penalties.
- Narcotic Drugs and Psychotropic substances Act-1985 and Rules: Objectives,
 Definitions, Authorities and Officers, Constitution and Functions of narcotic &
 Psychotropic Consultative Committee, National Fund for Controlling the Drug
 Abuse, Prohibition, Control and Regulation, opium poppy cultivation and production
 of poppy straw, manufacture, sale and export of opium, Offences and Penalties

UNIT-IV 08 Hours

- Study of Salient Features of Drugs and Magic Remedies Act and its rules: Objectives, Definitions, Prohibition of certain advertisements, Classes of Exempted advertisements, Offences and Penalties
- **Prevention of Cruelty to animals Act-1960:** Objectives, Definitions, Institutional Animal Ethics Committee, CPCSEA guidelines for Breeding and Stocking of Animals, Performance of Experiments, Transfer and acquisition of animals for experiment, Records, Power to suspend or revoke registration, Offences and Penalties
- National Pharmaceutical Pricing Authority: Drugs Price Control Order (DPCO)-2013. Objectives, Definitions, Sale prices of bulk drugs, Retail price of formulations, Retail price and ceiling price of scheduled formulations, National List of Essential Medicines (NLEM)


UNIT-V 07 Hours

- Pharmaceutical Legislations A brief review, Introduction, Study of drugs enquiry committee, Health survey and development committee, Hathi committee and Mudaliar committee
- Code of Pharmaceutical ethics D efinition, Pharmacist in relation to his job, trade, medical profession and his profession, Pharmacist's oath
- Medical Termination of Pregnancy Act
- Right to Information Act
- Introduction to Intellectual Property Rights (IPR)

Recommended books: (Latest Edition)

1. Forensic Pharmacy by B. Suresh

- 2. Text book of Forensic Pharmacy by B.M. Mithal
- 3. Hand book of drug law-by M.L. Mehra
- 4. A text book of Forensic Pharmacy by N.K. Jain
- 5. Drugs and Cosmetics Act/Rules by Govt. of India publications.
- 6. Medicinal and Toilet preparations act 1955 by Govt. of India publications.
- 7. Narcotic drugs and psychotropic substances act by Govt. of India publications
- 8. Drugs and Magic Remedies act by Govt. of India publication
- 9.Bare Acts of the said laws published by Government. Reference books (Theory)

BP601T. MEDICINAL CHEMISTRY – III (Theory)

45 Hours

Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasis on modern techniques of rational drug design like quantitative structure activity relationship (QSAR), Prodrug concept, combinatorial chemistry and Computer aided drug design (CADD). The subject also emphasizes on the chemistry, mechanism of action, metabolism, adverse effects, Structure Activity Relationships (SAR), therapeutic uses and synthesis of important drugs.

Objectives: Upon completion of the course student shall be able to

- 1. Understand the importance of drug design and different techniques of drug design.
- 2. Understand the chemistry of drugs with respect to their biological activity.
- 3. Know the metabolism, adverse effects and therapeutic value of drugs.
- **4.** Know the importance of SAR of drugs.

Course Content:

Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted by (*)

UNIT – I 10 Hours

Antibiotics

Historical background, Nomenclature, Stereochemistry, Structure activity relationship, Chemical degradation classification and important products of the following classes.

-Lactam antibiotics: Penicillin, Cepholosporins, - Lactamase inhibitors, Monobactams

Aminoglycosides: Streptomycin, Neomycin, Kanamycin

Tetracyclines: Tetracycline,Oxytetracycline, Chlortetracycline, Minocycline, Doxycycline

UNIT – II 10 Hours

Antibiotics

Historical background, Nomenclature, Stereochemistry, Structure activity relationship, Chemical degradation classification and important products of the following classes.

Macrolide: Erythromycin Clarithromycin, Azithromycin.

Miscellaneous: Chloramphenicol*, Clindamycin.

Prodrugs: Basic concepts and application of prodrugs design.

Antimalarials: Etiology of malaria.

Quinolines: SAR, Quinine sulphate, Chloroquine*, Amodiaquine, Primaquine phosphate, Pamaquine*, Quinacrine hydrochloride, Mefloquine.

Biguanides and dihydro triazines: Cycloguanil pamoate, Proguanil.

Miscellaneous: Pyrimethamine, Artesunete, Artemether, Atovoquone.

UNIT – III 10 Hours

Anti-tubercular Agents

Synthetic anti tubercular agents: Isoniozid*, Ethionamide, Ethambutol, Pyrazinamide, Para amino salicylic acid.*

Anti tubercular antibiotics: Rifampicin, Rifabutin, Cycloserine Streptomycine, Capreomycin sulphate.

Urinary tract anti-infective agents

Quinolones: SAR of quinolones, Nalidixic Acid, Norfloxacin, Enoxacin, Ciprofloxacin*, Ofloxacin, Lomefloxacin, Sparfloxacin, Gatifloxacin, Moxifloxacin

Miscellaneous: Furazolidine, Nitrofurantoin*, Methanamine.

Antiviral agents:

Amantadine hydrochloride, Rimantadine hydrochloride, Idoxuridine trifluoride, Acyclovir*, Gancyclovir, Zidovudine, Didanosine, Zalcitabine, Lamivudine, Loviride, Delavirding, Ribavirin, Saquinavir, Indinavir, Ritonavir.

UNIT – IV 08 Hours

Antifungal agents:

Antifungal antibiotics: Amphotericin-B, Nystatin, Natamycin, Griseofulvin.

Synthetic Antifungal agents: Clotrimazole, Econazole, Butoconazole, Oxiconazole Tioconozole, Miconazole*, Ketoconazole, Terconazole, Itraconazole, Fluconazole, Naftifine hydrochloride, Tolnaftate*.

Anti-protozoal Agents: Metronidazole*, Tinidazole, Ornidazole, Diloxanide, Iodoquinol, Pentamidine Isethionate, Atovaquone, Eflornithine.

Anthelmintics: Diethylcarbamazine citrate*, Thiabendazole, Mebendazole*, Albendazole, Niclosamide, Oxamniquine, Praziquantal, Ivermectin.

Sulphonamides and Sulfones

Historical development, chemistry, classification and SAR of Sulfonamides: Sulphamethizole, Sulfisoxazole, Sulphamethizine, Sulfacetamide*, Sulphapyridine, Sulfamethoxaole*, Sulphadiazine, Mefenide acetate, Sulfasalazine.

Folate reductase inhibitors: Trimethoprim*, Cotrimoxazole.

Sulfones: Dapsone*.

UNIT – V 07 Hours

Introduction to Drug Design

Various approaches used in drug design.

Physicochemical parameters used in quantitative structure activity relationship (QSAR) such as partition coefficient, Hammet's electronic parameter, Tafts steric parameter and Hansch analysis.

Pharmacophore modeling and docking techniques.

Combinatorial Chemistry: Concept and applications of combinatorial chemistry: solid phase and solution phase synthesis.

BP607P. MEDICINAL CHEMISTRY- III (Practical)

4 Hours / week

I Preparation of drugs and intermediates

- 1 Sulphanilamide
- 2 7-Hydroxy, 4-methyl coumarin
- 3 Chlorobutanol
- 4 Triphenyl imidazole
- 5 Tolbutamide
- 6 Hexamine

II Assay of drugs

- 1 Isonicotinic acid hydrazide
- 2 Chloroquine
- 3 Metronidazole
- 4 Dapsone
- 5 Chlorpheniramine maleate
- 6 Benzyl penicillin
- III Preparation of medicinally important compounds or intermediates by Microwave irradiation technique
- IV Drawing structures and reactions using chem draw®
- V Determination of physicochemical properties such as logP, clogP, MR, Molecular weight, Hydrogen bond donors and acceptors for class of drugs course content using drug design software Drug likeliness screening (Lipinskies RO5)

Recommended Books (Latest Editions)

- 1. Wilson and Giswold's Organic medicinal and Pharmaceutical Chemistry.
- 2. Foye's Principles of Medicinal Chemistry.
- 3. Burger's Medicinal Chemistry, Vol I to IV.
- 4. Introduction to principles of drug design- Smith and Williams.
- 5. Remington's Pharmaceutical Sciences.
- 6. Martindale's extra pharmacopoeia.

	The Organic Chemistry of Drug Synthesis by Lednicer, Vol. 1-5.
9.	Indian Pharmacopoeia.
10.	Text book of practical organic chemistry- A.I.Vogel.

BP602 T. PHARMACOLOGY-III (Theory)

45 Hours

Scope: This subject is intended to impart the fundamental knowledge on various aspects (classification, mechanism of action, therapeutic effects, clinical uses, side effects and contraindications) of drugs acting on respiratory and gastrointestinal system, infectious diseases, immuno-pharmacology and in addition, emphasis on the principles of toxicology and chronopharmacology.

Objectives: Upon completion of this course the student should be able to:

- 1. understand the mechanism of drug action and its relevance in the treatment of different infectious diseases
- 2. comprehend the principles of toxicology and treatment of various poisoningsand
- 3. appreciate correlation of pharmacology with related medical sciences.

Course Content:

UNIT-I 10hours

1. Pharmacology of drugs acting on Respiratory system

- a. Anti -asthmatic drugs
- b. Drugs used in the management of COPD
- c. Expectorants and antitussives
- d. Nasal decongestants
- e. Respiratory stimulants

2. Pharmacology of drugs acting on the Gastrointestinal Tract

- a. Antiulcer agents.
- b. Drugs for constipation and diarrhoea.
- c. Appetite stimulants and suppressants.
- d. Digestants and carminatives.
- e. Emetics and anti-emetics.

UNIT-II 10hours

3. Chemotherapy

- a. General principles of chemotherapy.
- b. Sulfonamides and cotrimoxazole.
- c. Antibiotics- Penicillins, cephalosporins, chloramphenicol, macrolides, quinolones and fluoroquinolins, tetracycline and aminoglycosides

UNIT-III 10hours

3. Chemotherapy

- a. Antitubercular agents
- b. Antileprotic agents

- c. Antifungal agents
- d. Antiviral drugs
- e.Anthelmintics
- f. Antimalarial drugs
- g. Antiamoebic agents

UNIT-IV 08hours

3. Chemotherapy

- 1. Urinary tract infections and sexually transmitted diseases.
- m. Chemotherapy of malignancy.

4. Immunopharmacology

- a. Immunostimulants
- b. Immunosuppressant

Protein drugs, monoclonal antibodies, target drugs to antigen, biosimilars

UNIT-V 07hours

5. Principles of toxicology

- **a.** Definition and basic knowledge of acute, subacute and chronic toxicity.
- **b.** Definition and basic knowledge of genotoxicity, carcinogenicity, teratogenicity and mutagenicity
- **c.** General principles of treatment of poisoning
- **d.** Clinical symptoms and management of barbiturates, morphine, organophosphorus compound and lead, mercury and arsenic poisoning.

6. Chronopharmacology

- a. Definition of rhythm and cycles.
- b. Biological clock and their significance leading to chronotherapy.

BP 608 P. PHARMACOLOGY-III (Practical)

4Hrs/Week

- 1. Dose calculation in pharmacological experiments
- 2. Antiallergic activity by mast cell stabilization assay
- 3. Study of anti-ulcer activity of a drug using pylorus ligand (SHAY) rat model and NSAIDS induced ulcer model.
- 4. Study of effect of drugs on gastrointestinal motility
- 5. Effect of agonist and antagonists on guinea pig ileum
- 6. Estimation of serum biochemical parameters by using semi- autoanalyser
- 7. Effect of saline purgative on frog intestine
- 8. Insulin hypoglycemic effect in rabbit
- 9. Test for pyrogens (rabbit method)
- 10. Determination of acute oral toxicity (LD50) of a drug from a given data
- 11. Determination of acute skin irritation / corrosion of a test substance
- 12. Determination of acute eye irritation / corrosion of a test substance
- 13. Calculation of pharmacokinetic parameters from a given data
- 14. Biostatistics methods in experimental pharmacology(student's t test, ANOVA)
- 15. Biostatistics methods in experimental pharmacology (Chi square test, Wilcoxon Signed Rank test)

Recommended Books (Latest Editions)

- 1. Rang H. P., Dale M. M., Ritter J. M., Flower R. J., Rang and Dale's Pharmacology, Churchil Livingstone Elsevier
- 2. Katzung B. G., Masters S. B., Trevor A. J., Basic and clinical pharmacology, Tata Mc Graw-Hill
- 3. Goodman and Gilman's, The Pharmacological Basis of Therapeutics
- 4. Marry Anne K. K., Lloyd Yee Y., Brian K. A., Robbin L.C., Joseph G. B., Wayne A. K., Bradley R.W., Applied Therapeutics, The Clinical use of Drugs. The Point Lippincott Williams & Wilkins
- 5. Mycek M.J, Gelnet S.B and Perper M.M. Lippincott's Illustrated Reviews-Pharmacology
- 6. K.D.Tripathi. Essentials of Medical Pharmacology, , JAYPEE Brothers Medical Publishers (P) Ltd, New Delhi.
- 7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher Modern Pharmacology with clinical Applications, by Charles R.Craig& Robert,
- 8. Ghosh MN. Fundamentals of Experimental Pharmacology. Hilton & Company, Kolkata,
- 9. Kulkarni SK. Handbook of experimental pharmacology. VallabhPrakashan,
- 10. N.Udupa and P.D. Gupta, Concepts in Chronopharmacology.

^{*}Experiments are demonstrated by simulated experiments/videos

BP 603 T. HERBAL DRUG TECHNOLOGY (Theory)

45 hours

Scope: This subject gives the student the knowledge of basic understanding of herbal drug industry, the quality of raw material, guidelines for quality of herbal drugs, herbal cosmetics, natural sweeteners, nutraceutical etc. The subject also emphasizes on Good Manufacturing Practices (GMP), patenting and regulatory issues of herbal drugs

Objectives: Upon completion of this course the student should be able to:

- 1. understand raw material as source of herbal drugs from cultivation to herbal drug product
- 2. know the WHO and ICH guidelines for evaluation of herbal drugs
- 3. know the herbal cosmetics, natural sweeteners, nutraceuticals
- 4. appreciate patenting of herbal drugs, GMP.

Course content:

UNIT-I 11 Hours

Herbs as raw materials

Definition of herb, herbal medicine, herbal medicinal product, herbal drug preparation Source of Herbs

Selection, identification and authentication of herbal materials

Processing of herbal raw material

Biodynamic Agriculture

Good agricultural practices in cultivation of medicinal plants including Organic farming. Pest and Pest management in medicinal plants: Biopesticides/Bioinsecticides.

Indian Systems of Medicine

- a) Basic principles involved in Ayurveda, Siddha, Unani and Homeopathy
- b) Preparation and standardization of Ayurvedic formulations viz Aristas and Asawas, Ghutika, Churna, Lehya and Bhasma.

UNIT-II 7 Hours

Nutraceuticals

General aspects, Market, growth, scope and types of products available in the market. Health benefits and role of Nutraceuticals in ailments like Diabetes, CVS diseases, Cancer, Irritable bowel syndrome and various Gastro intestinal diseases.

Study of following herbs as health food: Alfaalfa, Chicory, Ginger, Fenugreek, Garlic, Honey, Amla, Ginseng, Ashwagandha, Spirulina

Herbal-Drug and Herb-Food Interactions: General introduction to interaction and classification. Study of following drugs and their possible side effects and interactions: Hypercium, kava-kava, Ginkobiloba, Ginseng, Garlic, Pepper & Ephedra.

UNIT-III 10 Hours

Herbal Cosmetics

Sources and description of raw materials of herbal origin used via, fixed oils, waxes, gums colours, perfumes, protective agents, bleaching agents, antioxidants in products such as skin care, hair care and oral hygiene products.

Herbal excipients:

Herbal Excipients – Significance of substances of natural origin as excipients – colorants, sweeteners, binders, diluents, viscosity builders, disintegrants, flavors & perfumes.

Herbal formulations:

Conventional herbal formulations like syrups, mixtures and tablets and Novel dosage forms like phytosomes

UNIT- IV 10 Hours

Evaluation of Drugs WHO & ICH guidelines for the assessment of herbal drugs Stability testing of herbal drugs.

Patenting and Regulatory requirements of natural products:

- a) Definition of the terms: Patent, IPR, Farmers right, Breeder's right, Bioprospecting and Biopiracy
- b) Patenting aspects of Traditional Knowledge and Natural Products. Case study of Curcuma & Neem.

Regulatory Issues - Regulations in India (ASU DTAB, ASU DCC), Regulation of manufacture of ASU drugs - Schedule Z of Drugs & Cosmetics Act for ASU drugs.

UNIT-V 07 Hours

General Introduction to Herbal Industry

Herbal drugs industry: Present scope and future prospects.

A brief account of plant based industries and institutions involved in work on medicinal and aromatic plants in India.

Schedule T – Good Manufacturing Practice of Indian systems of medicine

Components of GMP (Schedule – T) and its objectives

Infrastructural requirements, working space, storage area, machinery and equipments, standard operating procedures, health and hygiene, documentation and records.

BP 609 P. HERBAL DRUG TECHNOLOGY (Practical)

4 hours/ week

- 1. To perform preliminary phytochemical screening of crude drugs.
- 2. Determination of the alcohol content of Asava and Arista
- 3. Evaluation of excipients of natural origin
- 4. Incorporation of prepared and standardized extract in cosmetic formulations like creams, lotions and shampoos and their evaluation.
- 5. Incorporation of prepared and standardized extract in formulations like syrups, mixtures and tablets and their evaluation as per Pharmacopoeial requirements.
- 6. Monograph analysis of herbal drugs from recent Pharmacopoeias
- 7. Determination of Aldehyde content
- 8. Determination of Phenol content
- 9. Determination of total alkaloids

Recommended Books: (Latest Editions)

- 1. Textbook of Pharmacognosy by Trease & Evans.
- 2. Textbook of Pharmacognosy by Tyler, Brady & Robber.
- 3. Pharmacognosy by Kokate, Purohit and Gokhale
- 4. Essential of Pharmacognosy by Dr.S.H.Ansari
- 5. Pharmacognosy & Phytochemistry by V.D.Rangari
- 6. Pharmacopoeal standards for Ayurvedic Formulation (Council of Research in Indian Medicine & Homeopathy)
- 7. Mukherjee, P.W. Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals. Business Horizons Publishers, New Delhi, India, 2002.

BP 604 T. BIOPHARMACEUTICS AND PHARMACOKINETICS (Theory)

45 Hours

Scope: This subject is designed to impart knowledge and skills of Biopharmaceutics and pharmacokinetics and their applications in pharmaceutical development, design of dose and dosage regimen and in solving the problems arised therein.

Objectives: Upon completion of the course student shall be able to:

- 1. Understand the basic concepts in biopharmaceutics and pharmacokinetics and their significance.
- 2. Use of plasma drug concentration-time data to calculate the pharmacokinetic parameters to describe the kinetics of drug absorption, distribution, metabolism, excretion, elimination.
- 3. To understand the concepts of bioavailability and bioequivalence of drug products and their significance.
- 4. Understand various pharmacokinetic parameters, their significance & applications.

Course Content:

UNIT-I 10

Hours

Introduction to

Biopharmaceutics

Absorption; Mechanisms of drug absorption through GIT, factors influencing drug absorption though GIT, absorption of drug from Non per oral extra-vascular routes, **Distribution** Tissue permeability of drugs, binding of drugs, apparent, volume of drug distribution, plasma and tissue protein binding of drugs, factors affecting protein-drug binding. Kinetics of protein binding, Clinical significance of protein binding of drugs

UNIT- II 10 Hours

Elimination: Drug metabolism and basic understanding metabolic pathways renal excretion of drugs, factors affecting renal excretion of drugs, renal clearance, Non renal routes of drug excretion of drugs

Bioavailability and Bioequivalence: Definition and Objectives of bioavailability, absolute and relative bioavailability, measurement of bioavailability, *in-vitro* drug dissolution models, *in-vitro-in-vivo* correlations, bioequivalence studies, methods to enhance the dissolution rates and bioavailability of poorly soluble drugs.

UNIT- III 10 Hours

Pharmacokinetics: Definition and introduction to Pharmacokinetics, Compartment models, Non compartment models, physiological models, One compartment open model. (a). Intravenous Injection (Bolus) (b). Intravenous infusion and (c) Extra vascular administrations. Pharmacokinetics parameters - K_E , t1/2, Vd, AUC, Ka, Clt and CL_R - definitions methods of eliminations, understanding of their significance and

application

UNIT- IV 08 Hours

Multicompartment models: Two compartment open model. IV bolus Kinetics of multiple dosing, steady state drug levels, calculation of loading and mainetnance doses and their significance in clinical settins.

UNIT- V 07 Hours

Nonlinear Pharmacokinetics: a. Introduction, b. Factors causing Non-linearity. c. Michaelis-menton method of estimating parameters, Explanation with example of drugs.

Recommended Books: (Latest Editions)

- 1. Biopharmaceutics and Clinical Pharmacokinetics by, Milo Gibaldi.
- 2. Biopharmaceutics and Pharmacokinetics; By Robert F Notari
- 3. Applied biopharmaceutics and pharmacokinetics, Leon Shargel and Andrew B.C.YU 4th edition, Prentice-Hall Inernational edition. USA
- 4. Bio pharmaceutics and Pharmacokinetics-A Treatise, By D. M. Brahmankar and Sunil B.Jaiswal, Vallabh Prakashan Pitampura, Delhi
- 5. Pharmacokinetics: By Milo Glbaldi Donald, R. Mercel Dekker Inc.
- 6. Hand Book of Clinical Pharmacokinetics, By Milo Gibaldi and Laurie Prescott by ADIS Health Science Press.
- 7. Biopharmaceutics; By Swarbrick
- 8. Clinical Pharmacokinetics, Concepts and Applications: By Malcolm Rowland and
- 9. Thomas, N. Tozen, Lea and Febrger, Philadelphia, 1995.
- 10. Dissolution, Bioavailability and Bioequivalence, By Abdou H.M, Mack, Publishing Company, Pennsylvania 1989.
- 11. Biopharmaceutics and Clinical Pharmacokinetics-An introduction 4th edition Revised and expanded by Rebort F Notari Marcel Dekker Inn, New York and Basel, 1987.
- 12. Remington's Pharmaceutical Sciences, By Mack Publishing Company, Pennsylvnia

BP 605 T. PHARMACEUTICAL BIOTECHNOLOGY (Theory)

45 Hours

Scope:

- Biotechnology has a long promise to revolutionize the biological sciences and technology.
- Scientific application of biotechnology in the field of genetic engineering, medicine and fermentation technology makes the subject interesting.
- Biotechnology is leading to new biological revolutions in diagnosis, prevention and cure of diseases, new and cheaper pharmaceutical drugs.
- Biotechnology has already produced transgenic crops and animals and the future promises lot more.
- It is basically a research-based subject.

Objectives: Upon completion of the subject student shall be able to;

- 1. Understanding the importance of Immobilized enzymes in Pharmaceutical Industries
- 2. Genetic engineering applications in relation to production of pharmaceuticals
- 3. Importance of Monoclonal antibodies in Industries
- 4. Appreciate the use of microorganisms in fermentation technology

Unit I 10 Hours

- a) Brief introduction to Biotechnology with reference to Pharmaceutical Sciences.
- b) Enzyme Biotechnology- Methods of enzyme immobilization and applications.
- c) Biosensors- Working and applications of biosensors in Pharmaceutical Industries.
- d) Brief introduction to Protein Engineering.
- e) Use of microbes in industry. Production of Enzymes- General consideration Amylase, Catalase, Peroxidase, Lipase, Protease, Penicillinase.
- f) Basic principles of genetic engineering.

Unit II 10 Hours

- a) Study of cloning vectors, restriction endonucleases and DNA ligase.
- b) Recombinant DNA technology. Application of genetic engineering in medicine.
- c) Application of r DNA technology and genetic engineering in the production of:
- i) Interferon ii) Vaccines- hepatitis- B iii) Hormones-Insulin.
- d) Brief introduction to PCR

Unit III 10 Hours

Types of immunity- humoral immunity, cellular immunity

- a) Structure of Immunoglobulins
- b) Structure and Function of MHC
- c) Hypersensitivity reactions, Immune stimulation and Immune suppressions.
- d) General method of the preparation of bacterial vaccines, toxoids, viral vaccine, antitoxins, serum-immune blood derivatives and other products relative to immunity.
- e) Storage conditions and stability of official vaccines
- f) Hybridoma technology- Production, Purification and Applications
- g) Blood products and Plasma Substituties.

Unit IV 08Hours

- a) Immuno blotting techniques- ELISA, Western blotting, Southern blotting.
- b) Genetic organization of Eukaryotes and Prokaryotes
- c) Microbial genetics including transformation, transduction, conjugation, plasmids and transposons.
- d) Introduction to Microbial biotransformation and applications.
- e) Mutation: Types of mutation/mutants.

Unit V 07 Hours

- a) Fermentation methods and general requirements, study of media, equipments, sterilization methods, aeration process, stirring.
- b) Large scale production fermenter design and its various controls.
- c) Study of the production of penicillins, citric acid, Vitamin B12, Glutamic acid, Griseofulvin,
- d) Blood Products: Collection, Processing and Storage of whole human blood, dried human plasma, plasma Substituties.

Recommended Books (Latest edition):

- 1. B.R. Glick and J.J. Pasternak: Molecular Biotechnology: Principles and Applications of RecombinantDNA: ASM Press Washington D.C.
- 2. RA Goldshy et. al., : Kuby Immunology.
- 3. J.W. Goding: Monoclonal Antibodies.
- 4. J.M. Walker and E.B. Gingold: Molecular Biology and Biotechnology by Royal

- Society of Chemistry.
- 5. Zaborsky: Immobilized Enzymes, CRC Press, Degraland, Ohio.
- 6. S.B. Primrose: Molecular Biotechnology (Second Edition) Blackwell Scientific Publication.
- 7. Stanbury F., P., Whitakar A., and Hall J., S., Principles of fermentation technology, 2nd edition, Aditya books Ltd., New Delhi

BP606TPHARMACEUTICAL QUALITY ASSURANCE (Theory)

45 Hours

Scope: This course deals with the various aspects of quality control and quality assurance aspects of pharmaceutical industries. It deals with the important aspects like cGMP, QC tests, documentation, quality certifications and regulatory affairs.

Objectives: Upon completion of the course student shall be able to:

- understand the cGMP aspects in a pharmaceutical industry
- appreciate the importance of documentation
- understand the scope of quality certifications applicable to pharmaceutical industries
- understand the responsibilities of QA & QC departments

Course content:

UNIT – I 10 Hours

Quality Assurance and Quality Management concepts: Definition and concept of Quality control, Quality assurance and GMP

Total Quality Management (TQM): Definition, elements, philosophies

ICH Guidelines: purpose, participants, process of harmonization, Brief overview of QSEM, with special emphasis on Q-series guidelines, ICH stability testing guidelines

Quality by design (QbD): Definition, overview, elements of QbD program, tools

ISO 9000 & ISO14000: Overview, Benefits, Elements, steps for registration

NABL accreditation: Principles and procedures

UNIT - II 10 Hours

Organization and personnel: Personnel responsibilities, training, hygiene and personal records. **Premises:** Design, construction and plant layout, maintenance, sanitation, environmental control, utilities and maintenance of sterile areas, control of contamination.

Equipments and raw materials: Equipment selection, purchase specifications, maintenance, purchase specifications and maintenance of stores for raw materials.

UNIT – III 10 Hours

Quality Control: Quality control test for containers, rubber closures and secondary packing

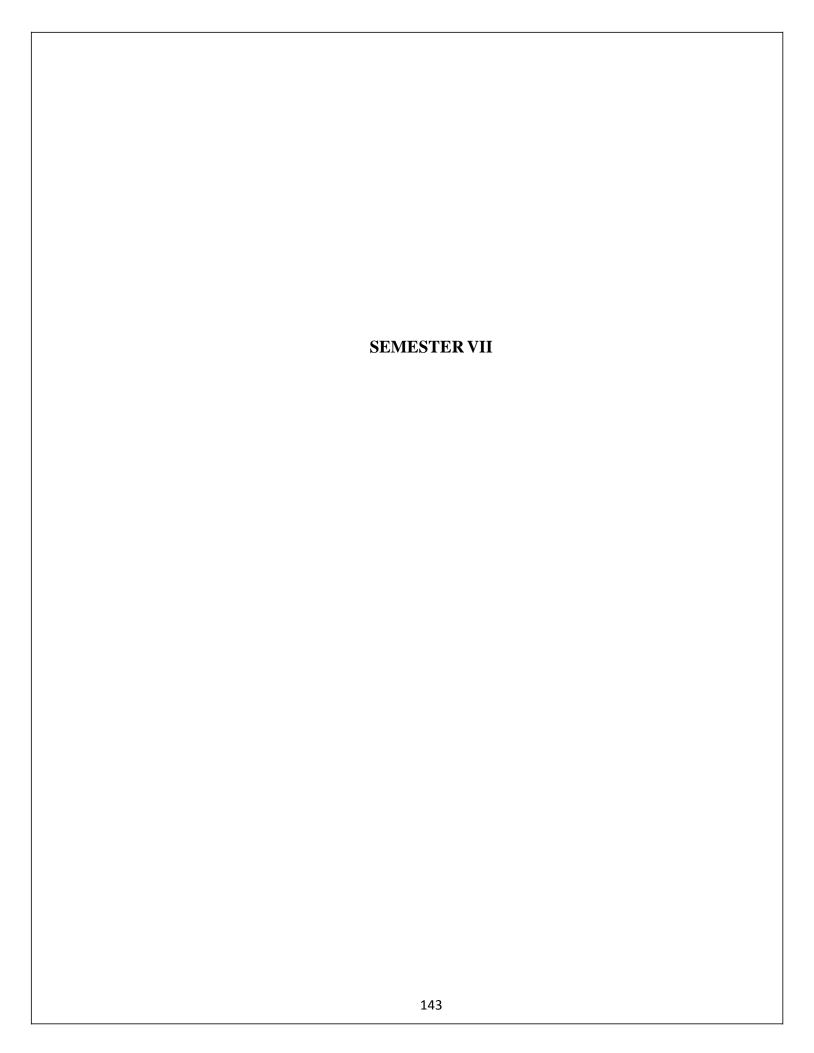
materials.

Good Laboratory Practices: General Provisions, Organization and Personnel, Facilities, Equipment, Testing Facilities Operation, Test and Control Articles, Protocol for Conduct of a Nonclinical Laboratory Study, Records and Reports, Disqualification of Testing Facilities

UNIT – IV 08 Hours

Complaints: Complaints and evaluation of complaints, Handling of return good, recalling and waste disposal.

Document maintenance in pharmaceutical industry: Batch Formula Record, Master Formula Record, SOP, Quality audit, Quality Review and Quality documentation, Reports and documents, distribution records.


UNIT – V 07 Hours

Calibration and Validation: Introduction, definition and general principles of calibration, qualification and validation, importance and scope of validation, types of validation, validation master plan. Calibration of pH meter, Qualification of UV-Visible spectrophotometer, General principles of Analytical method Validation.

Warehousing: Good warehousing practice, materials management

Recommended Books: (Latest Edition)

- 1. Quality Assurance Guide by organization of Pharmaceutical Products of India.
- 2. Good Laboratory Practice Regulations, 2nd Edition, Sandy Weinberg Vol. 69.
- 3. Quality Assurance of Pharmaceuticals- A compendium of Guide lines and Related materials Vol I WHO Publications.
- 4. A guide to Total Quality Management- Kushik Maitra and Sedhan K Ghosh
- 5. How to Practice GMP's P P Sharma.
- 6. ISO 9000 and Total Quality Management Sadhank G Ghosh
- 7. The International Pharmacopoeia Vol I, II, III, IV- General Methods of Analysis and Quality specification for Pharmaceutical Substances, Excipients and Dosage forms
- 8. Good laboratory Practices Marcel Deckker Series
- 9. ICH guidelines, ISO 9000 and 14000 guidelines

BP701T. INSTRUMENTAL METHODS OF ANALYSIS (Theory)

45 Hours

Scope: This subject deals with the application of instrumental methods in qualitative and quantitative analysis of drugs. This subject is designed to impart a fundamental knowledge on the principles and instrumentation of spectroscopic and chromatographic technique. This also emphasizes on theoretical and practical knowledge on modern analytical instruments that are used for drug testing.

Objectives: Upon completion of the course the student shall be able to

- 1. Understand the interaction of matter with electromagnetic radiations and its applications in drug analysis
- 2. Understand the chromatographic separation and analysis of drugs.
- 3. Perform quantitative & qualitative analysis of drugs using various analytical instruments.

Course Content:

UNIT -I 10 Hours

UV Visible spectroscopy

Electronic transitions, chromophores, auxochromes, spectral shifts, solvent effect on absorption spectra, Beer and Lambert's law, Derivation and deviations.

Instrumentation - Sources of radiation, wavelength selectors, sample cells, detectors-Photo tube, Photomultiplier tube, Photo voltaic cell, Silicon Photodiode.

Applications - Spectrophotometric titrations, Single component and multi component analysis

Fluorimetry

Theory, Concepts of singlet, doublet and triplet electronic states, internal and external conversions, factors affecting fluorescence, quenching, instrumentation and applications

UNIT –II 10 Hours

IR spectroscopy

Introduction, fundamental modes of vibrations in poly atomic molecules, sample handling, factors affecting vibrations

Instrumentation - Sources of radiation, wavelength selectors, detectors - Golay cell, Bolometer, Thermocouple, Thermister, Pyroelectric detector and applications

Flame Photometry-Principle, interferences, instrumentation and applications

Atomic absorption spectroscopy- Principle, interferences, instrumentation and applications

Nepheloturbidometry- Principle, instrumentation and applications

UNIT -III 10 Hours

Introduction to chromatography

Adsorption and partition column chromatography-Methodology, advantages, disadvantages and applications.

Thin layer chromatography- Introduction, Principle, Methodology, Rf values, advantages, disadvantages and applications.

Paper chromatography-Introduction, methodology, development techniques, advantages, disadvantages and applications

Electrophoresis— Introduction, factors affecting electrophoretic mobility, Techniques of paper, gel, capillary electrophoresis, applications

UNIT -IV 08 Hours

Gas chromatography - Introduction, theory, instrumentation, derivatization, temperature programming, advantages, disadvantages and applications

High performance liquid chromatography (HPLC)-Introduction, theory, instrumentation, advantages and applications.

UNIT –V 07 Hours

Ion exchange chromatography- Introduction, classification, ion exchange resins, properties, mechanism of ion exchange process, factors affecting ion exchange, methodology and applications

Gel chromatography- Introduction, theory, instrumentation and applications

Affinity chromatography- Introduction, theory, instrumentation and applications

BP705P. INSTRUMENTAL METHODS OF ANALYSIS (Practical)

4 Hours/Week

- 1 Determination of absorption maxima and effect of solvents on absorption maxima of organic compounds
- 2 Estimation of dextrose by colorimetry
- 3 Estimation of sulfanilamide by colorimetry
- 4 Simultaneous estimation of ibuprofen and paracetamol by UV spectroscopy
- 5 Assay of paracetamol by UV- Spectrophotometry
- 6 Estimation of quinine sulfate by fluorimetry
- 7 Study of quenching of fluorescence
- 8 Determination of sodium by flame photometry
- 9 Determination of potassium by flame photometry
- 10 Determination of chlorides and sulphates by nephelo turbidometry
- 11 Separation of amino acids by paper chromatography
- 12 Separation of sugars by thin layer chromatography
- 13 Separation of plant pigments by column chromatography
- 14 Demonstration experiment on HPLC
- 15 Demonstration experiment on Gas Chromatography

Recommended Books (Latest Editions)

- 1. Instrumental Methods of Chemical Analysis by B.K Sharma
- 2. Organic spectroscopy by Y.R Sharma
- 3. Text book of Pharmaceutical Analysis by Kenneth A. Connors
- 4. Vogel's Text book of Quantitative Chemical Analysis by A.I. Vogel
- 5. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake
- 6. Organic Chemistry by I. L. Finar
- 7. Organic spectroscopy by William Kemp
- 8. Quantitative Analysis of Drugs by D. C. Garrett
- 9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
- 10. Spectrophotometric identification of Organic Compounds by Silverstein

BP 702 T. INDUSTRIAL PHARMACYII (Theory)

45 Hours

Scope: This course is designed to impart fundamental knowledge on pharmaceutical product development and translation from laboratory to market

Objectives: Upon completion of the course, the student shall be able to:

- 1. Know the process of pilot plant and scale up of pharmaceutical dosage forms
- 2. Understand the process of technology transfer from lab scale to commercial batch
- 3. Know different Laws and Acts that regulate pharmaceutical industry
- 4. Understand the approval process and regulatory requirements for drug products

Course Content:

UNIT-I 10 Hours

Pilot plant scale up techniques: General considerations - including significance of personnel requirements, space requirements, raw materials, Pilot plant scale up considerations for solids, liquid orals, semi solids and relevant documentation, SUPAC guidelines, Introduction to platform technology

UNIT-II 10 Hours

Technology development and transfer: WHO guidelines for Technology Transfer(TT): Terminology, Technology transfer protocol, Quality risk management, Transfer from R & D to production (Process, packaging and cleaning), Granularity of TT Process (API, excipients, finished products, packaging materials) Documentation, Premises and equipments, qualification and validation, quality control, analytical method transfer, Approved regulatory bodies and agencies, Commercialization - practical aspects and problems (case studies), TT agencies in India - APCTD, NRDC, TIFAC, BCIL, TBSE / SIDBI; TT related documentation - confidentiality agreement, licensing, MoUs, legal issues

UNIT-III 10 Hours

Regulatory affairs: Introduction, Historical overview of Regulatory Affairs, Regulatory authorities, Role of Regulatory affairs department, Responsibility of Regulatory Affairs Professionals

Regulatory requirements for drug approval: Drug Development Teams, Non-Clinical Drug Development, Pharmacology, Drug Metabolism and Toxicology, General considerations of Investigational New Drug (IND) Application, Investigator's Brochure (IB) and New Drug Application (NDA), Clinical research / BE studies, Clinical Research Protocols, Biostatistics in Pharmaceutical Product Development, Data Presentation for FDA Submissions, Management of Clinical Studies.

UNIT-IV 08 Hours

Quality management systems: Quality management & Certifications: Concept of Quality, Total Quality Management, Quality by Design (QbD), Six Sigma concept, Out of Specifications (OOS), Change control, Introduction to ISO 9000 series of quality systems standards, ISO 14000, NABL, GLP

UNIT-V 07 Hours

Indian Regulatory Requirements: Central Drug Standard Control Organization (CDSCO) and State Licensing Authority: Organization, Responsibilities, Certificate of Pharmaceutical Product (COPP), Regulatory requirements and approval procedures for New Drugs.

Recommended Books: (Latest Editions)

- 1. Regulatory Affairs from Wikipedia, the free encyclopedia modified on 7th April available at http,//en.wikipedia.org/wiki/Regulatory_ Affairs.
- 2. International Regulatory Affairs Updates, 2005. available at http://www.iraup.com/about.php
- 3. Douglas J Pisano and David S. Mantus. Text book of FDA Regulatory Affairs A Guide for Prescription Drugs, Medical Devices, and Biologics' Second Edition.
- 4. Regulatory Affairs brought by learning plus, inc. available at http://www.cgmp.com/ra.htm.

BP 703T. PHARMACY PRACTICE (Theory)

45 Hours

Scope: In the changing scenario of pharmacy practice in India, for successful practice of Hospital Pharmacy, the students are required to learn various skills like drug distribution, drug information, and therapeutic drug monitoring for improved patient care. In community pharmacy, students will be learning various skills such as dispensing of drugs, responding to minor ailments by providing suitable safe medication, patient counselling for improved patient care in the community set up.

Objectives: Upon completion of the course, the student shall be able to

- 1. know various drug distribution methods in a hospital
- 2. appreciate the pharmacy stores management and inventory control
- 3. monitor drug therapy of patient through medication chart review and clinical review
- 4. obtain medication history interview and counsel the patients
- 5. identify drug related problems
- 6. detect and assess adverse drug reactions
- 7. interpret selected laboratory results (as monitoring parameters in therapeutics) of specific disease states
- 8. know pharmaceutical care services
- 9. do patient counseling in community pharmacy;
- 10. appreciate the concept of Rational drug therapy.

Unit I: 10 Hours

a) Hospital and it's organization

Definition, Classification of hospital- Primary, Secondary and Tertiary hospitals, Classification based on clinical and non- clinical basis, Organization Structure of a Hospital, and Medical staffs involved in the hospital and their functions.

b) Hospital pharmacy and its organization

Definition, functions of hospital pharmacy, Organization structure, Location, Layout and staff requirements, and Responsibilities and functions of hospital pharmacists.

c) Adverse drug reaction

Classifications - Excessive pharmacological effects, secondary pharmacological effects, idiosyncrasy, allergic drug reactions, genetically determined toxicity, toxicity following sudden withdrawal of drugs, Drug interaction- beneficial interactions, adverse interactions, and pharmacokinetic drug interactions, Methods for detecting

drug interactions, spontaneous case reports and record linkage studies, and Adverse drug reaction reporting and management.

d) Community Pharmacy

Organization and structure of retail and wholesale drug store, types and design, Legal requirements for establishment and maintenance of a drug store, Dispensing of proprietary products, maintenance of records of retail and wholesale drug store.

Unit II: 10 Hours

a) Drug distribution system in a hospital

Dispensing of drugs to inpatients, types of drug distribution systems, charging policy and labelling, Dispensing of drugs to ambulatory patients, and Dispensing of controlled drugs.

b) Hospital formulary

Definition, contents of hospital formulary, Differentiation of hospital formulary and Drug list, preparation and revision, and addition and deletion of drug from hospital formulary.

c) Therapeutic drug monitoring

Need for Therapeutic Drug Monitoring, Factors to be considered during the Therapeutic Drug Monitoring, and Indian scenario for Therapeutic Drug Monitoring.

d) Medication adherence

Causes of medication non-adherence, pharmacist role in the medication adherence, and monitoring of patient medication adherence.

e) Patient medication history interview

Need for the patient medication history interview, medication interview forms.

f) Community pharmacy management

Financial, materials, staff, and infrastructure requirements.

Unit III: 10 Hours

a) Pharmacy and therapeutic committee

Organization, functions, Policies of the pharmacy and therapeutic committee in including drugs into formulary, inpatient and outpatient prescription, automatic stop order, and emergency drug list preparation.

Drug

information services

Drug and Poison information centre, Sources of drug information, Computerised services, and storage and retrieval of information.

c) Patient

counseling

Definition of patient counseling; steps involved in patient counseling, and Special cases that require the pharmacist

d) Education and training program in the hospital

Role of pharmacist in the education and training program, Internal and external training program, Services to the nursing homes/clinics, Code of ethics for community pharmacy, and Role of pharmacist in the interdepartmental communication and community health education.

e) Prescribed medication order and communication skills

Prescribed medication order- interpretation and legal requirements, and Communication skills- communication with prescribers and patients.

Unit IV 8 Hours

a) Budget

preparation and implementation

Budget preparation and implementation

b) Clinical Pharmacy

Introduction to Clinical Pharmacy, Concept of clinical pharmacy, functions and responsibilities of clinical pharmacist, Drug therapy monitoring - medication chart review, clinical review, pharmacist intervention, Ward round participation, Medication history and Pharmaceutical care.

Dosing pattern and drug therapy based on Pharmacokinetic & disease pattern.

c) Over the counter (OTC) sales

Introduction and sale of over the counter, and Rational use of common over the counter medications.

Unit V 7 Hours

a) Drug store management and inventory control

Organisation of drug store, types of materials stocked and storage conditions, Purchase and inventory control: principles, purchase procedure, purchase order, procurement and stocking, Economic order quantity, Reorder quantity level, and Methods used for the analysis of the drug expenditure

b) Investigational use of drugs

Description, principles involved, classification, control, identification, role of hospital pharmacist, advisory committee.

c) Interpretation of Clinical Laboratory Tests

Blood chemistry, hematology, and urinalysis

Recommended Books (Latest Edition):

- 1. Merchant S.H. and Dr. J.S.Quadry. *A textbook of hospital pharmacy*, 4th ed. Ahmadabad: B.S. Shah Prakakshan; 2001.
- 2. Parthasarathi G, Karin Nyfort-Hansen, Milap C Nahata. *A textbook of Clinical Pharmacy Practice- essential concepts and skills*, 1st ed. Chennai: Orient Longman Private Limited; 2004.
- 3. William E. Hassan. *Hospital pharmacy*, 5th ed. Philadelphia: Lea & Febiger; 1986.
- 4. Tipnis Bajaj. *Hospital Pharmacy*, 1st ed. Maharashtra: Career Publications; 2008.
- 5. Scott LT. *Basic skills in interpreting laboratory data*, 4thed. American Society of Health System Pharmacists Inc; 2009.
- 6. Parmar N.S. *Health Education and Community Pharmacy*, 18th ed. India: CBS Publishers & Distributers; 2008.

Journals:

- 1. Therapeutic drug monitoring. ISSN: 0163-4356
- 2. Journal of pharmacy practice. ISSN: 0974-8326
- 3. American journal of health system pharmacy. ISSN: 1535-2900 (online)
- 4. Pharmacy times (Monthly magazine)

BP 704T: NOVEL DRUG DELIVERY SYSTEMS (Theory)

45 Hours

Scope: This subject is designed to impart basic knowledge on the area of novel drug delivery systems.

Objectives: Upon completion of the course student shall be able

- 1. To understand various approaches for development of novel drug delivery systems.
- 2. To understand the criteria for selection of drugs and polymers for the development of Novel drug delivery systems, their formulation and evaluation

Course content:

Unit-I 10 Hours

Controlled drug delivery systems: Introduction, terminology/definitions and rationale, advantages, disadvantages, selection of drug candidates. Approaches to design controlled release formulations based on diffusion, dissolution and ion exchange principles. Physicochemical and biological properties of drugs relevant to controlled release formulations

Polymers: Introduction, classification, properties, advantages and application of polymers in formulation of controlled release drug delivery systems.

Unit-II 10 Hours

Microencapsulation: Definition, advantages and disadvantages, microspheres /microcapsules, microparticles, methods of microencapsulation, applications

Mucosal Drug Delivery system: Introduction, Principles of bioadhesion / mucoadhesion, concepts, advantages and disadvantages, transmucosal permeability and formulation considerations of buccal delivery systems

Implantable Drug Delivery Systems: Introduction, advantages and disadvantages, concept of implants and osmotic pump

Unit-III 10 Hours

Transdermal Drug Delivery Systems: Introduction, Permeation through skin, factors affecting permeation, permeation enhancers, basic components of TDDS, formulation approaches

Gastroretentive drug delivery systems: Introduction, advantages, disadvantages, approaches for GRDDS – Floating, high density systems, inflatable and gastroadhesive systems and their applications

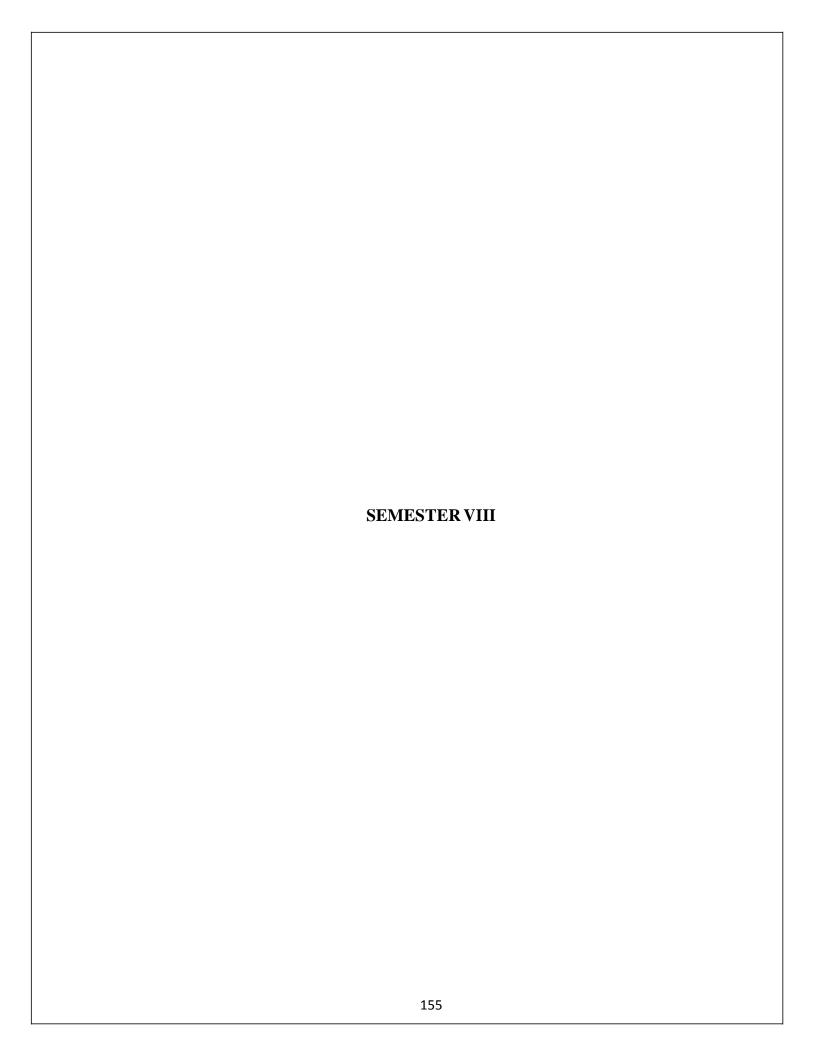
Nasopulmonary drug delivery system: Introduction to Nasal and Pulmonary routes of drug delivery, Formulation of Inhalers (dry powder and metered dose), nasal sprays, nebulizers

Unit-IV 08 Hours

Targeted drug Delivery: Concepts and approaches advantages and disadvantages, introduction to liposomes, niosomes, nanoparticles, monoclonal antibodies and their applications

Unit-V 07 Hours

Ocular Drug Delivery Systems: Introduction, intra ocular barriers and methods to overcome –Preliminary study, ocular formulations and ocuserts


Intrauterine Drug Delivery Systems: Introduction, advantages and disadvantages, development of intra uterine devices (IUDs) and applications

Recommended Books: (Latest Editions)

- 1. Y W. Chien, Novel Drug Delivery Systems, 2nd edition, revised and expanded, Marcel Dekker, Inc., New York, 1992.
- 2. Robinson, J. R., Lee V. H. L, Controlled Drug Delivery Systems, Marcel Dekker, Inc., New York, 1992.
- 3. Encyclopedia of Controlled Delivery. Edith Mathiowitz, Published by Wiley Interscience Publication, John Wiley and Sons, Inc, New York. Chichester/Weinheim
- 4. N.K. Jain, Controlled and Novel Drug Delivery, CBS Publishers & Distributors, New Delhi, First edition 1997 (reprint in 2001).
- 5. S.P. Vyas and R.K. Khar, Controlled Drug Delivery -concepts and advances, Vallabh Prakashan, New Delhi, First edition 2002.

Journals

- 1. Indian Journal of Pharmaceutical Sciences (IPA)
- 2. Indian Drugs (IDMA)
- 3. Journal of Controlled Release (Elsevier Sciences)
- 4. Drug Development and Industrial Pharmacy (Marcel & Decker)
- 5. International Journal of Pharmaceutics (Elsevier Sciences)

BP801T. BIOSTATISITCS AND RESEARCH METHODOLOGY (Theory)

45 Hours

Scope: To understand the applications of Biostatics in Pharmacy. This subject deals with descriptive statistics, Graphics, Correlation, Regression, logistic regression Probability theory, Sampling technique, Parametric tests, Non Parametric tests, ANOVA, Introduction to Design of Experiments, Phases of Clinical trials and Observational and Experimental studies, SPSS, R and MINITAB statistical software's, analyzing the statistical data using Excel.

Objectives: Upon completion of the course the student shall be able to

- Know the operation of M.S. Excel, SPSS, R and MINITAB®, DoE (Design of Experiment)
- Know the various statistical techniques to solve statistical problems
- Appreciate statistical techniques in solving the problems.

Course content:

Unit-I 10 Hours

Introduction: Statistics, Biostatistics, Frequency distribution

Measures of central tendency: Mean, Median, Mode-Pharmaceutical examples **Measures of dispersion**: Dispersion, Range, standard deviation, Pharmaceutical problems

Correlation: Definition, Karl Pearson's coefficient of correlation, Multiple correlation - Pharmaceuticals examples

Unit-II 10 Hours

Regression: Curve fitting by the method of least squares, fitting the lines y=a + bx and x = a + by, Multiple regression, standard error of regression– Pharmaceutical Examples **Probability:** Definition of probability, Binomial distribution, Normal distribution, Poisson's distribution, properties - problems

Sample, Population, large sample, small sample, Null hypothesis, alternative hypothesis, sampling, essence of sampling, types of sampling, Error-I type, Error-II type, Standard error of mean (SEM) - Pharmaceutical examples

Parametric test: t-test(Sample, Pooled or Unpaired and Paired), ANOVA, (One way and Two way), Least Significance difference

Unit-III 10 Hours

Non Parametric tests: Wilcoxon Rank Sum Test, Mann-Whitney U test, Kruskal-Wallis test. Friedman Test

Introduction to Research: Need for research, Need for design of Experiments,

Experiential Design Technique, plagiarism

Graphs: Histogram, Pie Chart, Cubic Graph, response surface plot, Counter Plot graph **Designing the methodology:** Sample size determination and Power of a study, Report writing and presentation of data, Protocol, Cohorts studies, Observational studies, Experimental studies, Designing clinical trial, various phases.

Unit-IV 8 Hours

Blocking and confounding system for Two-level factorials

Regression modeling: Hypothesis testing in Simple and Multiple regressionmodels **Introduction to Practical components of Industrial and Clinical Trials Problems**: Statistical Analysis Using Excel, SPSS, MINITAB®, DESIGN OF EXPERIMENTS, R - Online Statistical Software's to Industrial and Clinical trial approach

Unit-V 7Hours

Design and Analysis of experiments:

Factorial Design: Definition, 2², 2³design. Advantage of factorial design **Response Surface methodology**: Central composite design, Historical design,

Optimization Techniques

Recommended Books (Latest edition):

- 1. Pharmaceutical statistics- Practical and clinical applications, Sanford Bolton, publisher Marcel Dekker Inc. NewYork.
- 2. Fundamental of Statistics Himalaya Publishing House- S.C.Guptha
- 3. Design and Analysis of Experiments –PHI Learning Private Limited, R. Pannerselvam,
- 4. Design and Analysis of Experiments Wiley Students Edition, Douglas and C. Montgomery

BP 802T SOCIAL AND PREVENTIVE PHARMACY

Hours: 45

Scope:

The purpose of this course is to introduce to students a number of health issues and their challenges. This course also introduced a number of national health programmes. The roles of the pharmacist in these contexts are also discussed.

Objectives:

After the successful completion of this course, the student shall be able to:

- Acquire high consciousness/realization of current issuesrelated to health and pharmaceutical problems within the country and worldwide.
- Have a critical way of thinking based on current healthcare development.
- Evaluate alternative ways of solving problems related tohealth and pharmaceutical issues

Course content:

Unit I: 10 Hours

Concept of health and disease: Definition, concepts and evaluation of public health. Understanding the concept of prevention and control of disease, social causes of diseases and social problems of the sick.

Social and health education: Food in relation to nutrition and health, Balanced diet, Nutritional deficiencies, Vitamin deficiencies, Malnutrition and its prevention.

Sociology and health: Socio cultural factors related to health and disease, Impact of urbanization on health and disease, Poverty and health

Hygiene and health: personal hygiene and health care; avoidable habits

Unit II: 10 Hours

Preventive medicine: General principles of prevention and control of diseases such as cholera, SARS, Ebola virus, influenza, acute respiratory infections, malaria, chicken guinea, dengue, lymphatic filariasis, pneumonia, hypertension, diabetes mellitus, cancer, drug addiction-drug substance abuse

Unit III: 10 Hours

National health programs, its objectives, functioning and outcome of the following: HIV AND AIDS control programme, TB, Integrated disease surveillance program (IDSP), National leprosy control programme, National mental health program, National

programme for prevention and control of deafness, Universal immunization programme, National programme for control of blindness, Pulse polio programme.

Unit IV: 08 Hours

National health intervention programme for mother and child, National family welfare programme, National tobacco control programme, National Malaria Prevention Program, National programme for the health care for the elderly, Social health programme; role of WHO in Indian national program

Unit V: 07 Hours

Community services in rural, urban and school health: Functions of PHC, Improvement in rural sanitation, national urban health mission, Health promotion and education in school.

Recommended Books (Latest edition):

- 1. Short Textbook of Preventive and Social Medicine, Prabhakara GN, 2nd Edition, 2010, ISBN: 9789380704104, JAYPEE Publications
- Textbook of Preventive and Social Medicine (Mahajan and Gupta), Edited by Roy Rabindra Nath, Saha Indranil, 4th Edition, 2013, ISBN: 9789350901878, JAYPEE Publications
- 3. Review of Preventive and Social Medicine (Including Biostatistics), Jain Vivek, 6th Edition, 2014, ISBN: 9789351522331, JAYPEE Publications
- 4. Essentials of Community Medicine—A Practical Approach, Hiremath Lalita D, Hiremath Dhananjaya A, 2nd Edition, 2012, ISBN: 9789350250440, JAYPEE Publications
- 5. Park Textbook of Preventive and Social Medicine, K Park, 21st Edition, 2011, ISBN-14: 9788190128285, BANARSIDAS BHANOT PUBLISHERS.
- 6. Community Pharmacy Practice, Ramesh Adepu, BSP publishers, Hyderabad

Recommended Journals:

1. Research in Social and Administrative Pharmacy, Elsevier, Ireland

BP803ET. PHARMA MARKETING MANAGEMENT (Theory)

45 Hours

Scope:

The pharmaceutical industry not only needs highly qualified researchers, chemists and, technical people, but also requires skilled managers who can take the industry forward by managing and taking the complex decisions which are imperative for the growth of the industry. The Knowledge and Know-how of marketing management groom the people for taking a challenging role in Sales and Product management.

Course Objective: The course aims to provide an understanding of marketing concepts and techniques and their applications in the pharmaceutical industry.

Unit I 10 Hours

Marketing:

Definition, general concepts and scope of marketing; Distinction between marketing & selling; Marketing environment; Industry and competitive analysis; Analyzing consumer buying behavior; industrial buying behavior.

Pharmaceutical market:

Quantitative and qualitative aspects; size and composition of the market; demographic descriptions and socio-psychological characteristics of the consumer; market segmentation& targeting.Consumer profile; Motivation and prescribing habits of the physician; patients' choice of physician and retail pharmacist.Analyzing the Market;Role of market research.

Unit II 10 Hours

Product decision:

Classification, product line and product mix decisions, product life cycle,product portfolio analysis; product positioning; New product decisions; Product branding, packaging and labeling decisions, Product management in pharmaceutical industry.

Unit III 10 Hours

Promotion:

Methods, determinants of promotional mix, promotional budget; An overview of personal selling, advertising, direct mail, journals, sampling, retailing, medical exhibition, public relations, online promotional techniques for OTC Products.

Unit IV 10 Hours

Pharmaceutical marketing channels:

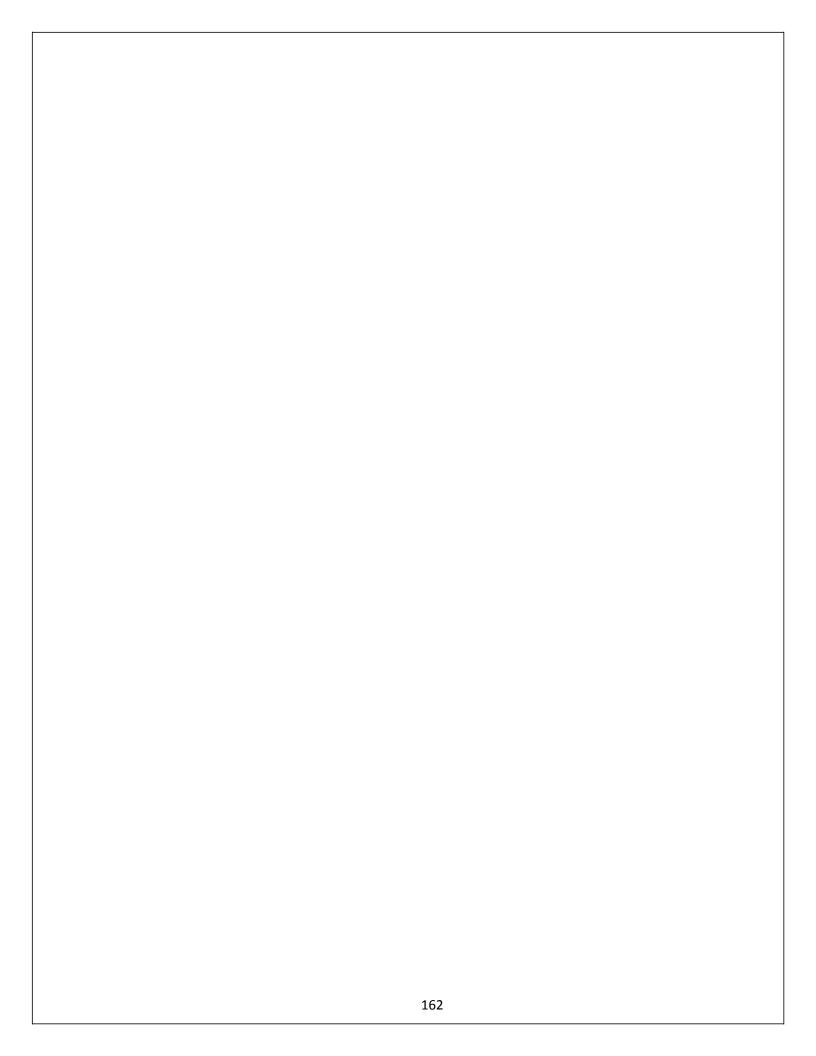
Designing channel, channel members, selecting the appropriate channel, conflict in channels, physical distribution management: Strategic importance, tasks in physical distribution management.

Professional sales representative (PSR):

Duties of PSR, purpose of detailing, selection and training, supervising, norms for customer calls, motivating, evaluating, compensation and future prospects of the PSR.

Unit V 10 Hours

Pricing:


Meaning, importance, objectives, determinants of price; pricing methods and strategies, issues in price management in pharmaceutical industry. An overview of DPCO (Drug Price Control Order) and NPPA (National Pharmaceutical Pricing Authority).

Emerging concepts in marketing:

Vertical & Horizontal Marketing; RuralMarketing; Consumerism; Industrial Marketing; Global Marketing.

Recommended Books: (Latest Editions)

- 1. Philip Kotler and Kevin Lane Keller: Marketing Management, Prentice Hall of India, New Delhi
- 2. Walker, Boyd and Larreche: Marketing Strategy- Planning and Implementation, Tata MC GrawHill. New Delhi.
- 3. Dhruv Grewal and Michael Levy: Marketing, Tata MC Graw Hill
- 4. Arun Kumar and N Menakshi: Marketing Management, Vikas Publishing, India
- 5. Rajan Saxena: Marketing Management; Tata MC Graw-Hill (India Edition)
- 6. Ramaswamy, U.S & Nanakamari, S: Marketing Managemnt:Global Perspective, IndianContext,Macmilan India, New Delhi.
- 7. Shanker, Ravi: Service Marketing, Excell Books, New Delhi
- 8. Subba Rao Changanti, Pharmaceutical Marketing in India (GIFT Excel series) Excel Publications.

BP804 ET: PHARMACEUTICAL REGULATORY SCIENCE (Theory)

45Hours

Scope: This course is designed to impart the fundamental knowledge on the regulatory requirements for approval of new drugs, and drug products in regulated markets of India & other countries like US, EU, Japan, Australia, UK etc. It prepares the students to learn in detail on the regulatory requirements, documentation requirements, and registration procedures for marketing the drug products.

Objectives: Upon completion of the subject student shall be able to;

- 1. Know about the process of drug discovery and development
- 2. Know the regulatory authorities and agencies governing the manufacture and sale of pharmaceuticals
- 3. Know the regulatory approval process and their registration in Indian and international markets

Course content:

Unit I 10Hours

New Drug Discovery and development

Stages of drug discovery, Drug development process, pre-clinical studies, non-clinical activities, clinical studies, Innovator and generics, Concept of generics, Generic drug product development.

Unit II 10Hours

Regulatory Approval Process

Approval processes and timelines involved in Investigational New Drug (IND), New Drug Application (NDA), Abbreviated New Drug Application (ANDA). Changes to an approved NDA / ANDA.

Regulatory authorities and agencies

Overview of regulatory authorities of India, United States, European Union, Australia, Japan, Canada (Organization structure and types of applications)

Unit III 10Hours

Registration of Indian drug product in overseas market

Procedure for export of pharmaceutical products, Technical documentation, Drug Master Files (DMF), Common Technical Document (CTD), electronic Common Technical

Document (eCTD), ASEAN Common Technical Document (ACTD)research.

Unit IV 08Hours

Clinical trials

Developing clinical trial protocols, Institutional Review Board / Independent Ethics committee - formation and working procedures, Informed consent process and procedures, GCP obligations of Investigators, sponsors & Monitors, Managing and Monitoring clinical trials, Pharmacovigilance - safety monitoring in clinical trials

Unit V 07Hours

Regulatory Concepts

Basic terminology, guidance, guidelines, regulations, Laws and Acts, Orange book, Federal Register, Code of Federal Regulatory, Purple book

Recommended books (Latest edition):

- 1. Drug Regulatory Affairs by Sachin Itkar, Dr. N.S. Vyawahare, Nirali Prakashan.
- 2. The Pharmaceutical Regulatory Process, Second Edition Edited by Ira R. Berry and Robert P. Martin, Drugs and the Pharmaceutical Sciences, Vol. 185. Informa Health care Publishers.
- 3. New Drug Approval Process: Accelerating Global Registrations By Richard A Guarino, MD, 5th edition, Drugs and the Pharmaceutical Sciences, Vol.190.
- 4. Guidebook for drug regulatory submissions / Sandy Weinberg. By John Wiley & Sons. Inc.
- 5. FDA Regulatory Affairs: a guide for prescription drugs, medical devices, and biologics /edited by Douglas J. Pisano, David Mantus.
- 6. Generic Drug Product Development, Solid Oral Dosage forms, Leon Shargel and Isader Kaufer, Marcel Dekker series, Vol.143
- 7. Clinical Trials and Human Research: A Practical Guide to Regulatory Compliance By Fay A. Rozovsky and Rodney K. Adams
- 8. Principles and Practices of Clinical Research, Second Edition Edited by John I. Gallin and Frederick P. Ognibene
- 9. Drugs: From Discovery to Approval, Second Edition By Rick Ng

BP 805T: PHARMACOVIGILANCE (Theory)

45 hours

Scope: This paper will provide an opportunity for the student to learn about development of pharmacovigilance as a science, basic terminologies used in pharmacovigilance, global scenario of Pharmacovigilance, train students on establishing pharmacovigilance programme in an organization, various methods that can be used to generate safety data and signal detection. This paper also develops the skills of classifying drugs, diseases and adverse drug reactions.

Objectives:

At completion of this paper it is expected that students will be able to (know, do, and appreciate):

- 1. Why drug safety monitoring is important?
- 2. History and development of pharmacovigilance
- 3. National and international scenario of pharmacovigilance
- 4. Dictionaries, coding and terminologies used in pharmacovigilance
- 5. Detection of new adverse drug reactions and their assessment
- 6. International standards for classification of diseases and drugs
- 7. Adverse drug reaction reporting systems and communication in pharmacovigilance
- 8. Methods to generate safety data during pre clinical, clinical and post approval phases of drugs' life cycle
- 9. Drug safety evaluation in paediatrics, geriatrics, pregnancy and lactation
- 10. Pharmacovigilance Program of India (PvPI) requirement for ADR reporting in India
- 11. ICH guidelines for ICSR, PSUR, expedited reporting, pharmacovigilance planning
- 12. CIOMS requirements for ADR reporting
- 13. Writing case narratives of adverse events and their quality.

Course Content

Unit I 10 Hours

Introduction to Pharmacovigilance

- History and development of Pharmacovigilance
- Importance of safety monitoring of Medicine
- WHO international drug monitoring programme
- Pharmacovigilance Program of India(PvPI)

Introduction to adverse drug reactions

- Definitions and classification of ADRs
- Detection and reporting
- Methods in Causality assessment
- Severity and seriousness assessment
- Predictability and preventability assessment
- Management of adverse drug reactions

Basic terminologies used in pharmacovigilance

- Terminologies of adverse medication related events
- Regulatory terminologies

Unit II 10 hours

Drug and disease classification

- Anatomical, therapeutic and chemical classification of drugs
- International classification of diseases
- Daily defined doses
- International Non proprietary Names for drugs

Drug dictionaries and coding in pharmacovigilance

- WHO adverse reaction terminologies
- MedDRA and Standardised MedDRA queries
- WHO drug dictionary
- Eudravigilance medicinal product dictionary

Information resources in pharmacovigilance

- Basic drug information resources
- Specialised resources for ADRs

Establishing pharmacovigilance programme

- Establishing in a hospital
- Establishment & operation of drug safety department in industry
- Contract Research Organisations (CROs)
- Establishing a national programme

Unit III 10 Hours

Vaccine safety surveillance

- Vaccine Pharmacovigilance
- Vaccination failure
- Adverse events following immunization

Pharmacovigilance methods

- Passive surveillance Spontaneous reports and case series
- Stimulated reporting
- Active surveillance Sentinel sites, drug event monitoring and registries
- Comparative observational studies Cross sectional study, case control study and cohort study
- Targeted clinical investigations

Communication in pharmacovigilance

- Effective communication in Pharmacovigilance
- Communication in Drug Safety Crisis management
- Communicating with Regulatory Agencies, Business Partners, Healthcare facilities & Media

Unit IV 8 Hours

Safety data generation

- Pre clinical phase
- Clinical phase
- Post approval phase (PMS)

ICH Guidelines for Pharmacovigilance

- Organization and objectives of ICH
- Expedited reporting
- Individual case safety reports
- Periodic safety update reports
- Post approval expedited reporting
- Pharmacovigilance planning
- Good clinical practice in pharmacovigilance studies

Unit V 7 hours

Pharmacogenomics of adverse drug reactions

• Genetics related ADR with example focusing PK parameters.

Drug safety evaluation in special population

- Paediatrics
- Pregnancy and lactation
- Geriatrics

CIOMS

- CIOMS Working Groups
- CIOMS Form

CDSCO (India) and Pharmacovigilance

- D&C Act and Schedule Y
- Differences in Indian and global pharmacovigilance requirements

Recommended Books (Latest edition):

- 1. Textbook of Pharmacovigilance: S K Gupta, Jaypee Brothers, Medical Publishers.
- 2. Practical Drug Safety from A to Z By Barton Cobert, Pierre Biron, Jones and Bartlett Publishers.
- 3. Mann's Pharmacovigilance: Elizabeth B. Andrews, Nicholas, Wiley Publishers.
- 4. Stephens' Detection of New Adverse Drug Reactions: John Talbot, Patrick Walle, Wiley Publishers.
- 5. An Introduction to Pharmacovigilance: Patrick Waller, Wiley Publishers.
- 6. Cobert's Manual of Drug Safety and Pharmacovigilance: Barton Cobert, Jones & Bartlett Publishers.
- 7. Textbook of Pharmacoepidemiolog edited by Brian L. Strom, Stephen E Kimmel, Sean Hennessy, Wiley Publishers.
- 8. A Textbook of Clinical Pharmacy Practice -Essential Concepts and Skills:G. Parthasarathi, Karin NyfortHansen, Milap C. Nahata
- 9. National Formulary of India
- 10. Text Book of Medicine by Yashpal Munjal

11. Text book of Pharmacovigilance: concept and practice by GP Mohanta and PK Manna

12. http://www.whoumc.org/DynPage.aspx?id=105825&mn1=7347&mn2=7259&mn 3=7297 13. http://www.ich.org/ 14. http://www.cioms.ch/ 15. http://cdsco.nic.in/ 16. http://www.who.int/vaccine_safety/en/ 17. http://www.ipc.gov.in/PvPI/pv_home.html
168

BP 806 ET. QUALITY CONTROL AND STANDARDIZATION OF HERBALS (Theory)

Scope: In this subject the student learns about the various methods and guidelines for evaluation and standardization of herbs and herbal drugs. The subject also provides an opportunity for the student to learn cGMP, GAP and GLP in traditional system of medicines.

Objectives: Upon completion of the subject student shall be able to;

- 1. know WHO guidelines for quality control of herbal drugs
- 2. know Quality assurance in herbal drug industry
- 3. know the regulatory approval process and their registration in Indian and international markets
- 4. appreciate EU and ICH guidelines for quality control of herbal drugs

Unit I 10 hours

Basic tests for drugs – Pharmaceutical substances, Medicinal plants materials and dosage forms

WHO guidelines for quality control of herbal drugs.

Evaluation of commercial crude drugs intended for use

Unit II 10 hours

Quality assurance in herbal drug industry of cGMP, GAP, GMP and GLP in traditional system of medicine.

WHO Guidelines on current good manufacturing Practices (cGMP) for Herbal Medicines WHO Guidelines on GACP for Medicinal Plants.

Unit III 10 hours

EU and ICH guidelines for quality control of herbal drugs.

Research Guidelines for Evaluating the Safety and Efficacy of Herbal Medicines

Unit IV 08 hours

Stability testing of herbal medicines. Application of various chromatographic techniques in standardization of herbal products.

Preparation of documents for new drug application and export registration GMP requirements and Drugs & Cosmetics Act provisions.

Unit V 07 hours

Regulatory requirements for herbal medicines.

WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems Comparison of various Herbal Pharmacopoeias.

Role of chemical and biological markers in standardization of herbal products

Recommended Books: (Latest Editions

- 1. Pharmacognosy by Trease and Evans
- 2. Pharmacognosy by Kokate, Purohit and Gokhale
- 3. Rangari, V.D., Text book of Pharmacognosy and Phytochemistry Vol. I, Carrier Pub., 2006.
- 4. Aggrawal, S.S., Herbal Drug Technology. Universities Press, 2002.
- 5. EMEA. Guidelines on Quality of Herbal Medicinal Products/Traditional Medicinal Products.
- 6. Mukherjee, P.W. Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals. Business Horizons Publishers, New Delhi, India, 2002.
- 7. Shinde M.V., Dhalwal K., Potdar K., Mahadik K. Application of quality control principles to herbal drugs. International Journal of Phytomedicine 1(2009); p. 4-8.
- 8. WHO. Quality Control Methods for Medicinal Plant Materials, World Health Organization, Geneva, 1998. WHO. Guidelines for the Appropriate Use of Herbal Medicines. WHO Regional Publications, Western Pacific Series No 3, WHO Regional office for the Western Pacific, Manila, 1998.
- 9. WHO. The International Pharmacopeia, Vol. 2: Quality Specifications, 3rd edn. World Health Organization, Geneva, 1981.
- 10. WHO. Quality Control Methods for Medicinal Plant Materials. World Health Organization, Geneva, 1999.
- 11. WHO. WHO Global Atlas of Traditional, Complementary and Alternative Medicine. 2 vol. set. Vol. 1 contains text and Vol. 2, maps. World Health Organization, Geneva, 2005.
- 12. WHO. Guidelines on Good Agricultural and Collection Practices (GACP) for Medicinal Plants. World Health Organization, Geneva, 2004.

BP 807 ET. COMPUTER AIDED DRUG DESIGN (Theory)

45 Hours

Scope: This subject is designed to provide detailed knowledge of rational drug design process and various techniques used in rational drug design process.

Objectives: Upon completion of the course, the student shall be able to understand

- Design and discovery of lead molecules
- The role of drug design in drug discovery process
- The concept of QSAR and docking
- Various strategies to develop new drug like molecules.
- The design of new drug molecules using molecular modeling software

Course Content:

UNIT-I 10 Hours

Introduction to Drug Discovery and Development

Stages of drug discovery and development

Lead discovery and Analog Based Drug Design

Rational approaches to lead discovery based on traditional medicine, Random screening, Non-random screening, serendipitous drug discovery, lead discovery based on drug metabolism, lead discovery based on clinical observation.

Analog Based Drug Design:Bioisosterism, Classification, Bioisosteric replacement. Any three case studies

UNIT-II 10 Hours

Quantitative Structure Activity Relationship (QSAR)

SAR versus QSAR, History and development of QSAR, Types of physicochemical parameters, experimental and theoretical approaches for the determination of physicochemical parameters such as Partition coefficient, Hammet's substituent constant and Tafts steric constant. Hansch analysis, Free Wilson analysis, 3D-QSAR approaches like COMFA and COMSIA.

UNIT-III 10 Hours

Molecular Modeling and virtual screening techniques

Virtual Screening techniques: Drug likeness screening, Concept of pharmacophore mapping and pharmacophore based Screening,

Molecular docking: Rigid docking, flexible docking, manual docking, Docking based screening. *De novo* drug design.

UNIT-IV 08 Hours

Informatics & Methods in drug design

Introduction to Bioinformatics, chemoinformatics. ADME databases, chemical, biochemical and pharmaceutical databases.

UNIT-V 07 Hours

Molecular Modeling: Introduction to molecular mechanics and quantum mechanics. Energy Minimization methods and Conformational Analysis, global conformational minima determination.

Recommended Books (Latest Editions)

- 1. Robert GCK, ed., "Drug Action at the Molecular Level" University Prak Press Baltimore.
- 2. Martin YC. "Quantitative Drug Design" Dekker, New York.
- 3. Delgado JN, Remers WA eds "Wilson & Gisvolds's Text Book of Organic Medicinal & Pharmaceutical Chemistry" Lippincott, New York.
- 4. Foye WO "Principles of Medicinal chemistry 'Lea & Febiger.
- 5. Koro lkovas A, Burckhalter JH. "Essentials of Medicinal Chemistry" Wiley Interscience.
- 6. Wolf ME, ed "The Basis of Medicinal Chemistry, Burger's Medicinal Chemistry" John Wiley & Sons, New York.
- 7. Patrick Graham, L., An Introduction to Medicinal Chemistry, Oxford University Press.
- 8. Smith HJ, Williams H, eds, "Introduction to the principles of Drug Design" Wright Boston.
- 9. Silverman R.B. "The organic Chemistry of Drug Design and Drug Action" Academic Press New York.

BP808ET: CELL AND MOLECULAR BIOLOGY (Elective subject)

45 Hours

Scope:

- Cell biology is a branch of biology that studies cells their physiological properties, their structure, the organelles they contain, interactions with their environment, their life cycle, division, death and cell function.
- This is done both on a microscopic and molecular level.
- Cell biology research encompasses both the great diversity of single-celled organisms like bacteria and protozoa, as well as the many specialized cells in multi-cellular organisms such as humans, plants, and sponges.

Objectives: Upon completion of the subject student shall be able to;

- Summarize cell and molecular biology history.
- Summarize cellular functioning and composition.
- Describe the chemical foundations of cell biology.
- Summarize the DNA properties of cell biology.
- Describe protein structure and function.
- Describe cellular membrane structure and function.
- Describe basic molecular genetic mechanisms.
- Summarize the Cell Cycle

Course content:

Unit I 10Hours

- a) Cell and Molecular Biology: Definitions theory and basics and Applications.
- b) Cell and Molecular Biology: History and Summation.
- c) Properties of cells and cell membrane.
- d) Prokaryotic versus Eukaryotic
- e) Cellular Reproduction
- f) Chemical Foundations an Introduction and Reactions (Types)

Unit II 10 Hours

- a) DNA and the Flow of Molecular Information
- b) DNA Functioning
- c) DNA and RNA
- d) Types of RNA
- e) Transcription and Translation

Unit III 10 Hours

- a) Proteins: Defined and Amino Acids
- b) Protein Structure

- c) Regularities in Protein Pathways
- d) Cellular Processes
- e) Positive Control and significance of Protein Synthesis

Unit IV 08 Hours

- a) Science of Genetics
- b) Transgenics and Genomic Analysis
- c) Cell Cycle analysis
- d) Mitosis and Meiosis
- e) Cellular Activities and Checkpoints

Unit V 07 Hours

- a) Cell Signals: Introduction
- b) Receptors for Cell Signals
- c) Signaling Pathways: Overview
- d) Misregulation of Signaling Pathways
- e) Protein-Kinases: Functioning

Recommended Books (latest edition):

- 1. W.B. Hugo and A.D. Russel: Pharmaceutical Microbiology, Blackwell Scientific publications, Oxford London.
- 2. Prescott and Dunn., Industrial Microbiology, 4th edition, CBS Publishers & Distributors, Delhi.
- 3. Pelczar, Chan Kreig, Microbiology, Tata McGraw Hill edn.
- 4. Malcolm Harris, Balliere Tindall and Cox: Pharmaceutical Microbiology.
- 5. Rose: Industrial Microbiology.
- 6. Probisher, Hinsdill et al: Fundamentals of Microbiology, 9th ed. Japan
- 7. Cooper and Gunn's: Tutorial Pharmacy, CBS Publisher and Distribution.
- 8. Peppler: Microbial Technology.
- 9. Edward: Fundamentals of Microbiology.
- 10. N.K.Jain: Pharmaceutical Microbiology, Vallabh Prakashan, Delhi
- 11. Bergeys manual of systematic bacteriology, Williams and Wilkins- A Waverly company
- 12. B.R. Glick and J.J. Pasternak: Molecular Biotechnology: Principles and Applications of RecombinantDNA: ASM Press Washington D.C.
- 13. RA Goldshy et. al., : Kuby Immunology.

BP809ET. COSMETIC SCIENCE(Theory)

45Hours

UNIT I 10Hours

Classification of cosmetic and cosmeceutical products

Definition of cosmetics as per Indian and EU regulations, Evolution of cosmeceuticals from cosmetics, cosmetics as quasi and OTC drugs

Cosmetic excipients: Surfactants, rheology modifiers, humectants, emollients,

preservatives. Classification and application

Skin: Basic structure and function of skin.

Hair: Basic structure of hair. Hair growth cycle.

Oral Cavity: Common problem associated with teeth and gums.

UNIT II 10 Hours

Principles of formulation and building blocks of skin care products:

Face wash,

Moisturizing cream, Cold Cream, Vanishing cream and their advantages and disadvantages. Application of these products in formulation of cosmecuticals.

Antiperspants & deodorants- Actives & mechanism of action.

Principles of formulation and building blocks of Hair care products:

Conditioning shampoo, Hair conditioner, anti-dandruff shampoo.

Hair oils.

Chemistry and formulation of Para-phylene diamine based hair dye.

Principles of formulation and building blocks of oral care products:

Toothpaste for bleeding gums, sensitive teeth. Teeth whitening, Mouthwash.

UNIT III 10 Hours

Sun protection, Classification of Sunscreens and SPF.

Role of herbs in cosmetics:

Skin Care: Aloe and turmeric Hair care: Henna and amla. Oral care: Neem and clove

Analytical cosmetics: BIS specification and analytical methods for shampoo, skin-

cream and toothpaste.

UNIT IV 08 Hours.

Principles of Cosmetic Evaluation:Principles of sebumeter, corneometer. Measurement of TEWL, Skin Color, Hair tensile strength, Hair combing properties Soaps, and syndet bars. Evolution and skin benfits.

UNIT V 07 Hours

Oily and dry skin, causes leading to dry skin, skin moisturisation. Basic understanding of the terms Comedogenic, dermatitis.

Cosmetic problems associated with Hair and scalp: Dandruff, Hair fall causes Cosmetic problems associated with skin: blemishes, wrinkles, acne, prickly heat and body odor.

Antiperspirants and Deodorants- Actives and mechanism of action

References

- 1) Harry's Cosmeticology, Wilkinson, Moore, Seventh Edition, George Godwin.
- 2) Cosmetics Formulations, Manufacturing and Quality Control, P.P. Sharma, 4th Edition, Vandana Publications Pvt. Ltd., Delhi.
- 3) Text book of cosmelicology by Sanju Nanda & Roop K. Khar, Tata Publishers.

BP810 ET. PHARMACOLOGICAL SCREENING METHODS

45 Hours

Scope: This subject is designed to impart the basic knowledge of preclinical studies in experimental animals including design, conduct and interpretations of results.

Objectives

Upon completion of the course the student shall be able to,

- Appreciate the applications of various commonly used laboratory animals.
- Appreciate and demonstrate the various screening methods used in preclinical research
- Appreciate and demonstrate the importance of biostatistics and researchmethodology
- Design and execute a research hypothesis independently

Unit –I	08 Hours
Laboratory Animals:	
Study of CPCSEA and OECD guidelines for maintenance, breeding	
and conduct of experiments on laboratory animals, Common lab	
animals: Description and applications of different species and strains	
of animals. Popular transgenic and mutant animals.	
Techniques for collection of blood and common routes of drug	
administration in laboratory animals, Techniques of blood collection	
and euthanasia.	
Unit –II	10 Hours
Preclinical screening models	
a. Introduction: Dose selection, calculation and conversions,	
preparation of drug solution/suspensions, grouping of animals and	
importance of sham negative and positive control groups.	
Rationale for selection of animal species and sex for the study.	
b. Study of screening animal models for	
Diuretics, nootropics, anti-Parkinson's, antiasthmatics,	
Preclinical screening models: for CNS activity- analgesic,	
antipyretic,anti-inflammatory, general anaesthetics, sedative and	
hypnotics, antipsychotic, antidepressant, antiepileptic,	
antiparkinsonism, alzheimer's disease	

Unit –III	
Preclinical screening models: for ANS activity, sympathomimetics, sympatholytics, parasympathomimetics, parasympatholytics, skeletal muscle relaxants, drugs acting on eye, local anaethetics	
Unit –IV	
Preclinical screening models: for CVS activity- antihypertensives, diuretics, antiarrhythmic, antidyslepidemic, anti aggregatory, coagulants, and anticoagulants Preclinical screening models for other important drugs like antiulcer, antidiabetic, anticancer and antiasthmatics.	
Research methodology and Bio-statistics	05 Hours
Selection of research topic, review of literature, research hypothesis and study design	
Pre-clinical data analysis and interpretation using Students 't' test	
and One-way ANOVA. Graphical representation of data	

Recommended Books (latest edition):

- 1. Fundamentals of experimental Pharmacology-by M.N.Ghosh
- 2. Hand book of Experimental Pharmacology-S.K.Kulakarni
- 3. CPCSEA guidelines for laboratory animal facility.
- 4. Drug discovery and Evaluation by Vogel H.G.
- 5. Drug Screening Methods by Suresh Kumar Gupta and S. K. Gupta
- 6. Introduction to biostatistics and research methods by PSS Sundar Rao and J Richard

BP 811 ET. ADVANCED INSTRUMENTATION TECHNIQUES

45 Hours

Scope: This subject deals with the application of instrumental methods in qualitative and quantitative analysis of drugs. This subject is designed to impart advanced knowledge on the principles and instrumentation of spectroscopic and chromatographic hyphenated techniques. This also emphasizes on theoretical and practical knowledge on modern analytical instruments that are used for drug testing.

Objectives:Upon completion of the course the student shall be able to

- understand the advanced instruments used and its applications in drug analysis
- understand the chromatographic separation and analysis of drugs.
- understand the calibration of various analytical instruments
- know analysis of drugs using various analytical instruments.

Course Content:

UNIT-I 10 Hours

Nuclear Magnetic Resonance spectroscopy

Principles of H-NMR and C-NMR, chemical shift, factors affecting chemical shift, coupling constant, Spin - spin coupling, relaxation, instrumentation and applications

Mass Spectrometry- Principles, Fragmentation, Ionization techniques – Electron impact, chemical ionization, MALDI, FAB, Analyzers-Time of flight and Quadrupole, instrumentation, applications

UNIT-II 10 Hours

Thermal Methods of Analysis: Principles, instrumentation and applications of ThermogravimetricAnalysis (TGA), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC)

X-Ray Diffraction Methods: Origin of X-rays, basic aspects of crystals, X-ray

Crystallography, rotating crystal technique, single crystal diffraction, powder diffraction, structural elucidation and applications.

UNIT-III 10 Hours

Calibration and validation-as per ICH and USFDA guidelines Calibration of following Instruments

Electronic balance, UV-Visible spectrophotometer, IR spectrophotometer,

Fluorimeter, Flame Photometer, HPLC and GC

UNIT-IV 08 Hours

Radio immune assay: Importance, various components, Principle, different methods, Limitation and Applications of Radio immuno assay

Extraction techniques: General principle and procedure involved in the solid phase extraction and liquid-liquid extraction

UNIT-V 07 Hours

Hyphenated techniques-LC-MS/MS, GC-MS/MS, HPTLC-MS.

Recommended Books (Latest Editions)

- 1. Instrumental Methods of Chemical Analysis by B.K Sharma
- 2. Organic spectroscopy by Y.R Sharma
- 3. Text book of Pharmaceutical Analysis by Kenneth A. Connors
- 4. Vogel's Text book of Quantitative Chemical Analysis by A.I. Vogel
- 5. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake
- 6. Organic Chemistry by I. L. Finar
- 7. Organic spectroscopy by William Kemp
- 8. Quantitative Analysis of Drugs by D. C. Garrett
- 9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
- 10. Spectrophotometric identification of Organic Compounds by Silverstein

BP 812 ET. DIETARY SUPPLEMENTS AND NUTRACEUTICALS

No. of hours :3 Tutorial:1 Credit point:4

Scope:

This subject covers foundational topic that are important for understanding the need and requirements of dietary supplements among different groups in the population.

Objective:

This module aims to provide an understanding of the concepts behind the theoretical applications of dietary supplements. By the end of the course, students should be able to:

- 1. Understand the need of supplements by the different group of people to maintain healthy life.
- 2. Understand the outcome of deficiencies in dietary supplements.
- 3. Appreciate the components in dietary supplements and the application.
- 4. Appreciate the regulatory and commercial aspects of dietary supplements including health claims.

UNIT I 07 hours

- a. Definitions of Functional foods, Nutraceuticals and Dietary supplements. Classification of Nutraceuticals, Health problems and diseases that can be prevented or cured by Nutraceuticals i.e. weight control, diabetes, cancer, heart disease, stress, osteoarthritis, hypertension etc.
- b. Public health nutrition, maternal and child nutrition, nutrition and ageing, nutrition education in community.
- c. Source, Name of marker compounds and their chemical nature, Medicinal uses and health benefits of following used as nutraceuticals/functional foods: Spirulina, Soyabean, Ginseng, Garlic, Broccoli, Gingko, Flaxseeds

UNIT II 15 hours

Phytochemicals as nutraceuticals: Occurrence and characteristic features(chemical nature medicinal benefits) of following

- a) Carotenoids- and -Carotene, Lycopene, Xanthophylls, leutin
- b) Sulfides: Diallyl sulfides, Allyl trisulfide.
- c) Polyphenolics: Reservetrol
- d) Flavonoids- Rutin, Naringin, Quercitin, Anthocyanidins, catechins, Flavones
- e) Prebiotics / Probiotics.: Fructo oligosaccharides, Lacto bacillum
- f) Phyto estrogens: Isoflavones, daidzein, Geebustin, lignans
- g) Tocopherols
- h) Proteins, vitamins, minerals, cereal, vegetables and beverages as functional foods: oats, wheat bran, rice bran, sea foods, coffee, tea and the like.

UNIT III 07 hours

a) Introduction to free radicals: Free radicals, reactive oxygen species, production of free radicals in cells, damaging reactions of free radicals on lipids, proteins, Carbohydrates, nucleic acids.

b) Dietary fibres and complex carbohydrates as functional food ingredients..

UNIT IV 10 hours

- a) Free radicals in Diabetes mellitus, Inflammation, Ischemic reperfusion injury, Cancer, Atherosclerosis, Free radicals in brain metabolism and pathology, kidney damage, muscle damage. Free radicals involvement in other disorders. Free radicals theory of ageing.
- b) Antioxidants: Endogenous antioxidants enzymatic and nonenzymatic antioxidant defence, Superoxide dismutase, catalase, Glutathione peroxidase, Glutathione Vitamin C, Vitamin E, Lipoic acid, melatonin Synthetic antioxidants: Butylated hydroxy Toluene, Butylated hydroxy Anisole.
- c) Functional foods for chronic disease prevention

UNIT V 06 hours

- a) Effect of processing, storage and interactions of various environmental factors on the potential of nutraceuticals.
- b) Regulatory Aspects; FSSAI, FDA, FPO, MPO, AGMARK. HACCP and GMPs on Food Safety. Adulteration of foods.
- c) Pharmacopoeial Specifications for dietary supplements and nutraceuticals.

References:

- 1. Dietetics by Sri Lakshmi
- 2. Role of dietary fibres and neutraceuticals in preventing diseases by K.T Agusti and P.Faizal: BSPunblication.
- 3. Advanced Nutritional Therapies by Cooper. K.A., (1996).
- 4. The Food Pharmacy by Jean Carper, Simon & Schuster, UK Ltd., (1988).
- 5. Prescription for Nutritional Healing by James F.Balch and Phyllis A.Balch 2nd Edn., Avery Publishing Group, NY (1997).
- 6. G. Gibson and C.williams Editors 2000 Functional foods Woodhead Publ.Co.London.
- 7. Goldberg, I. Functional Foods. 1994. Chapman and Hall, New York.
- 8. Labuza, T.P. 2000 Functional Foods and Dietary Supplements: Safety, Good Manufacturing Practice (GMPs) and Shelf Life Testing in *Essentials of Functional Foods* M.K. Sachmidl and T.P. Labuza eds. Aspen Press.
- 9. Handbook of Nutraceuticals and Functional Foods, Third Edition (Modern Nutrition)
- 10. Shils, ME, Olson, JA, Shike, M. 1994 *Modern Nutrition in Health and Disease*. Eighth edition. Lea and Febiger

Semester VIII – Elective course on Pharmaceutical Product Development

No of Hours: 3 Tutorial:1 Credit points:4

Unit-I 10 Hours

Introduction to pharmaceutical product development, objectives, regulations related to preformulation, formulation development, stability assessment, manufacturing and quality control testing of different types of dosage forms

Unit-II 10 Hours

An advanced study of Pharmaceutical Excipients in pharmaceutical product development with a special reference to the following categories

- i. Solvents and solubilizers
- ii. Cyclodextrins and their applications
- iii. Non ionic surfactants and their applications
- iv. Polyethylene glycols and sorbitols
- v. Suspending and emulsifying agents
- vi. Semi solid excipients

Unit-III 10 Hours

An advanced study of Pharmaceutical Excipients in pharmaceutical product development with a special reference to the following categories

- i. Tablet and capsule excipients
- ii. Directly compressible vehicles
- iii. Coat materials
- iv. Excipients in parenteral and aerosols products
- v. Excipients for formulation of NDDS

Selection and application of excipients in pharmaceutical formulations with specific industrial applications

Unit-IV 08 Hours

Optimization techniques in pharmaceutical product development. A study of various optimization techniques for pharmaceutical product development with specific examples. Optimization by factorial designs and their applications. A study of QbD and its application in pharmaceutical product development.

Unit-V 07 Hours

Selection and quality control testing of packaging materials for pharmaceutical product development- regulatory considerations.

Recommended Books (Latest editions)

- 1. Pharmaceutical Statistics Practical and Clinical Applications by Stanford Bolton, CharlesBon; Marcel Dekker Inc.
- 2. Encyclopedia of Pharmaceutical Technology, edited by James swarbrick, Third Edition, Informa Healthcare publishers.
- 3. Pharmaceutical Dosage Forms, Tablets, Volume II, edited by Herbert A. Lieberman and Leon Lachman; Marcel Dekker, Inc.
- 4. The Theory and Practice of Industrial Pharmacy, Fourth Edition, edited by Roop kKhar, S P Vyas, Farhan J Ahmad, Gaurav K Jain; CBS Publishers and Distributors Pvt.Ltd. 2013.
- 5. Martin's Physical Pharmacy and Pharmaceutical Sciences, Fifth Edition, edited by Patrick J. Sinko, BI Publications Pvt. Ltd.
- 6. Targeted and Controlled Drug Delivery, Novel Carrier Systems by S. P. Vyas and R. K.Khar, CBS Publishers and Distributors Pvt. Ltd, First Edition 2012.
- 7. Pharmaceutical Dosage Forms and Drug Delivery Systems, Loyd V. Allen Jr., Nicholas B.Popovich, Howard C. Ansel, 9th Ed. 40
- 8. Aulton's Pharmaceutics The Design and Manufacture of Medicines, Michael E. Aulton,3rd Ed.
- 9. Remington The Science and Practice of Pharmacy, 20th Ed.
- 10. Pharmaceutical Dosage Forms Tablets Vol 1 to 3, A. Liberman, Leon Lachman and Joseph B. Schwartz
- 11. Pharmaceutical Dosage Forms Disperse Systems Vol 1 to 3, H.A. Liberman, Martin, M.R and Gilbert S. Banker.
- 12. Pharmaceutical Dosage Forms Parenteral Medication Vol 1 & 2, Kenneth E. Avis and H.A. Libermann.
- 13. Advanced Review Articles related to the topics.

2016

THE MASTER OF PHARMACY (M. PHARM.) COURSE REGULATION 2014

(Based on notification in the Gazette of India No. 362, Dated December 11, 2014)

SCHEME AND SYLLABUS

PHARMACY COUNCIL OF INDIA

Combined Council's Building, Kotla Road, Aiwan-E-Ghalib Marg, New Delhi-110 002. Website: www.pci.nic.

Table of Contents

S.No.	Content	Page.No.
	Regulations	01
1.	Short Title and Commencement	01
2.	Minimum qualification for admission	01
3.	Duration of the program	01
4.	Medium of instruction and examinations	01
5.	Working days in each semester	01
6.	Attendance and progress	02
7.	Program/Course credit structure	02
8.	Academic work	03
9.	Course of study	03
10.	Program Committee	15
11.	Examinations/Assessments	16
12.	Promotion and award of grades	32
13.	Carry forward of marks	32
14.	Improvement of internal assessment	33
15.	Reexamination of end semester examinations	33
16.	Allowed to keep terms (ATKT)	33
17.	Grading of performances	33
18.	The Semester grade point average (SGPA)	34
19.	Cumulative Grade Point Average (CGPA)	34
20.	Declaration of class	35
21.	Project work	35
22.	Award of Ranks	36
23.	Award of degree	36
24.	Duration for completion of the program of study	36
25.	Revaluation I Retotaling of answer papers	36
26.	Re-admission after break of study	36
27.	Pharmaceutics (MPH)	37
28.	Industrial Pharmacy (MIP)	55
29.	Pharmaceutical Chemistry (MPC)	73
30.	Pharmaceutical Analysis (MPA)	98
31.	Pharmaceutical Quality Assurance (MQA)	119
32.	Pharmaceutical Regulatory Affairs (MRA)	142
33.	Pharmaceutical Biotechnology (MPB)	165
34.	Pharmacy Practice (MPP)	188
35.	Pharmacology (MPL)	209
36.	Pharmacognosy (MPG)	232
37.	Research Methodology & Biostatistics (MRM)	252

असाधारण

EXTRAORDINARY

भाग III-खण्ड 4

PART III-Section 4

प्राधिकार से प्रकाशित PUBLISHED BY AUTHORITY

म 3621

नई दिल्ली, बृहस्पतिवार, दिसम्बर 11, 2014/अग्रहायण 20, 1936

No. 3621

NEW DELIH, THURSDAY, DECEMBER 11, 2014/AGRAHAYANA 20, 1936

PHARMACY COUNCIL OF INDIA NOTIFICATION

New Delhi, the 10th December, 2014

The Master of Pharmacy (M.Pharm) Course Regulations, 2014

No. 14-136/ 2014-PCL—In exercise of the powers conferred by Sections 10 and 18 of the Pharmacy Act, 1948 (8 of 1948), the Pharmacy Council of India, with the approval of the Central Government hereby makes the following regulations; namely—

CHAPTER -I:REGULATIONS

1. Short Title and Commencement

These regulations shall be called as "The Revised Regulations for the Master of Pharmacy (M. Pharm.)Degree Program - Credit Based Semester System (CBSS) of the Pharmacy Council of India, New Delhi". They shall come into effect from the Academic Year 2016-17. The regulations framed are subject to modifications from time to time by the authorities of the university.

2. Minimum qualification for admission

A Pass in the following examinations

- a) B. Pharm Degree examination of an Indian university established by law in India from an institution approved by Pharmacy Council of India and has scored not less than 55 % of the maximum marks (aggregate of 4 years of B.Pharm.)
- b) Every student, selected for admission to post graduate pharmacy program in any PCI approved institution should have obtained registration with the State Pharmacy Council or should obtain the same within one month from the date of his/her admission, failing which the admission of the candidate shall be cancelled.

Note: It is mandatory to submit a migration certificate obtained from the respective university where the candidate had passed his/her qualifying degree (B.Pharm.)

3. Duration of the program

The program of study for M.Pharm. shall extend over a period of four semesters (two academic years). The curricula and syllabi for the program shall be prescribed from time to time by Phamacy Council of India, New Delhi.

4. Medium of instruction and examinations

Medium of instruction and examination shall be in English.

5. Working days in each semester

Each semestershall consist of not less than 100 working days. The odd semesters shall be conducted from the month of June July to November/December and the even semesters shall be conducted from the month of December January to May June in every calendar year.

6. Attendance and progress

A candidate is required to put in at least 80% attendance in individual courses considering theory and practical separately. The candidate shall complete the prescribed course satisfactorily to be eligible to appear for the respective examinations.

7. Program/Course credit structure

As per the philosophy of Credit Based Semester System, certain quantum of academic work viz. theory classes, practical classes, seminars, assignments, etc. are measured in terms of credits. On satisfactory completion of the courses, a candidate earns credits. The amount of credit associated with a course is dependent upon the number of hours of instruction per week in that course. Similarly the credit associated with any of the other academic, co/extracurricular activities is dependent upon the quantum of work expected to be put in for each of these activities per week/per activity.

7.1. Credit assignment

7.1.1. Theory and Laboratory courses

Courses are broadly classified as Theory and Practical. Theory courses consist of lecture (L) and Practical (P) courses consist of hours spent in the laboratory. Credits (C) for a course is dependent on the number of hours of instruction per week in that course, and is obtained by using a multiplier of one (1) for lecture and a multiplier of half (1/2) for practical (laboratory) hours. Thus, for example, a theory course having four lectures per week throughout the semester carries a credit of 4. Similarly, a practical having four laboratory hours per week throughout semester carries a credit of 2.

The contact hours of seminars, assignments and research work shall be treated as that of practical courses for the purpose of calculating credits. i.e., the contact hours shall be multiplied by 1/2. Similarly, the contact hours of journal club, research work presentations and discussions with the supervisor shall be considered as theory course and multiplied by 1.

7.2. Minimum credit requirements

The minimum credit points required for the award of M. Pharm. degree is 95. However based on the credit points earned by the students under the head of co-curricular activities, a student shall earn a maximum of 100 credit points. These credits are divided into Theory courses, Practical, Seminars, Assignments, Research work, Discussions with the supervisor, Journal club and Co-Curricular activities over the duration of four semesters. The credits

are distributed semester-wise as shown in Table 14. Courses generally progress in sequence, building competencies and their positioning indicates certain academic maturity on the part of the learners. Learners are expected to follow the semester-wise schedule of courses given in the syllabus.

8. Academic work

A regular record of attendance both in Theory, Practical, Seminar, Assignment, Journal club, Discussion with the supervisor, Research work presentation and Dissertation shall be maintained by the department / teaching staff of respective courses.

9. Course of study

The specializations in M.Pharm program is given in Table 1.

Table – 1: List of M.Pharm. Specializations and their Code

S. No.	Specialization	Code
1.	Pharmaceutics	MPH
2.	Industrial Pharmacy	MIP
3.	Pharmaceutical Chemistry	MPC
4.	Pharmaceutical Analysis	MPA
5.	Pharmaceutical Quality Assurance	MQA
6.	Pharmaceutical Regulatory Affairs	MRA
7.	Pharmaceutical Biotechnology	MPB
8.	Pharmacy Practice	MPP
9.	Pharmacology	MPL
10.	Pharmacognosy	MPG

The course of study for M.Pharm specializations shall include Semester wise Theory & Practical as given in Table – 2 to 11. The number of hours to be devoted to each theory and practical course in any semester shall not be less than that shown in Table – 2 to 11.

Table - 2: Course of study for M. Pharm. (Pharmaceutics)

Course Code	Course	Credit Hours	Credit Points	Hrs./w k	Marks
	Seme	ester I			
MPH101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MPH102T	Drug Delivery System	4	4	4	100
MPH103T	Modern Pharmaceutics	4	4	4	100
MPH104T	Regulatory Affair	4	4	4	100
MPH105P	Pharmaceutics Practical I	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Seme	ster II			
MPH201T	Molecular Pharmaceutics (Nano Tech and Targeted DDS)	4	4	4	100
MPH202T	Advanced Biopharmaceutics & Pharmacokinetics	4	4	4	100
МРН203Т	Computer Aided Drug Delivery System	4	4	4	100
MPH204T	Cosmetic and Cosmeceuticals	4	4	4	100
MPH205P	Pharmaceutics Practical II	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 3: Course of study for M. Pharm. (Industrial Pharmacy)

Course Code	Course	Credit Hours	Credit Points	Hrs./w k	Marks
	Seme	ster I			
MIP101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MIP102T	Pharmaceutical Formulation Development	4	4	4	100
MIP103T	Novel drug delivery systems	4	4	4	100
MIP104T	Intellectual Property Rights	4	4	4	100
MIP105P	Industrial Pharmacy Practical	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Semes	ster II			
MIP201T	Advanced Biopharmaceutics and Pharmacokinetics	4	4	4	100
MIP202T	Scale up and Technology Transfer	4	4	4	100
MIP203T	Pharmaceutical Production Technology	4	4	4	100
MIP204T	Entrepreneurship Management	4	4	4	100
MIP205P	Industrial Pharmacy Practical	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 4: Course of study for M. Pharm. (Pharmaceutical Chemistry)

Course Code	Course	Credit Hours	Credit Points	Hrs./w k	Marks
	Sem	ester I			
MPC101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MPC1012T	Advanced Organic Chemistry -I	4	4	4	100
MPC103T	Advanced Medicinal chemistry	4	4	4	100
MPC104T	Chemistry of Natural Products	4	4	4	100
MPC105P	Pharmaceutical Chemistry Practical I	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Seme	ester II			
MPC201T	Advanced Spectral Analysis	4	4	4	100
MPC202T	Advanced Organic Chemistry -II	4	4	4	100
MPC203T	Computer Aided Drug Design	4	4	4	100
MPC204T	Pharmaceutical Process Chemistry	4	4	4	100
MPC205P	Pharmaceutical Chemistry Practical II	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 5: Course of study for M. Pharm. (Pharmaceutical Analysis)

Course Code	Course	Credit Hours	Credit Points	Hrs./wk	Marks
	Seme	ster I			
MPA101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MPA102T	Advanced Pharmaceutical Analysis	4	4	4	100
MPA103T	Pharmaceutical Validation	4	4	4	100
MPA104T	Food Analysis	4	4	4	100
MPA105P	Pharmaceutical Analysis Practical I	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Semes	ster II			
MPA201T	Advanced Instrumental Analysis	4	4	4	100
MPA202T	Modern Bio-Analytical Techniques	4	4	4	100
MPA203T	Quality Control and Quality Assurance	4	4	4	100
MPA204T	Herbal and Cosmetic Analysis	4	4	4	100
MPA205P	Pharmaceutical Analysis Practical II	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 6: Course of study for M. Pharm. (Pharmaceutical Quality Assurance)

Course Code	Course	Credit Hours	Credit Points	Hrs./w k	Marks
	Seme	ster I			
MQA101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MQA102T	Quality Management System	4	4	4	100
MQA103T	Quality Control and Quality Assurance	4	4	4	100
MQA104T	Product Development and Technology Transfer	4	4	4	100
MQA105P	Pharmaceutical Quality Assurance Practical I	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Semes	ster II			
MQA201T	Hazards and Safety Management	4	4	4	100
MQA202T	Pharmaceutical Validation	4	4	4	100
MQA203T	Audits and Regulatory Compliance	4	4	4	100
MQA204T	Pharmaceutical Manufacturing Technology	4	4	4	100
MQA205P	Pharmaceutical Quality Assurance Practical II	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 7: Course of study for M. Pharm. (Regulatory Affairs)

Course Code	Course	Credit Hours	Credit Points	Hrs./ wk	Marks
	Sem	ester I			
MRA 101T	Good Regulatory Practices	4	4	4	100
MRA 102T	Documentation and Regulatory Writing	4	4	4	100
MRA 103T	Clinical Research Regulations	4	4	4	100
MRA 104T	Regulations and Legislation for Drugs & Cosmetics, Medical Devices, Biologicals & Herbals, and Food & Nutraceuticals In India and Intellectual Property Rights	4	4	4	100
MRA 105P	Regulatory Affairs Practical I	12	6	12	150
	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
		ester II			
MRA 201T	Regulatory Aspects of Drugs & Cosmetics	4	4	4	100
MRA 202T	Regulatory Aspects of Herbal & Biologicals	4	4	4	100
MRA 203T	Regulatory Aspects of Medical Devices	4	4	4	100
MRA 204T	Regulatory Aspects of Food & Nutraceuticals	4	4	4	100
MRA 205P	Regulatory Affairs Practical II	12	6	12	150
	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 8: Course of study for M. Pharm. (Pharmaceutical Biotechnology)

Course	Course Credit Credit Hrs./w				
Code	Course	Hours	Points	k	Marks
	Seme	ster I			
MPB 101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MPB 102T	Microbial And Cellular Biology	4	4	4	100
MPB 103T	Bioprocess Engineering and Technology	4	4	4	100
MPB 104T	Advanced Pharmaceutical Biotechnology	4	4	4	100
MPB 105P	Pharmaceutical Biotechnology Practical I	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Semes	ster II			
MPB 201T	Proteins and protein Formulation	4	4	4	100
MPB 202T	Immunotechnology	4	4	4	100
MPB 203T	Bioinformatics and Computer Technology	4	4	4	100
MPB 204T	Biological Evaluation of Drug Therapy	4	4	4	100
MPB 205P	Pharmaceutical Biotechnology Practical II	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 9: Course of study for M. Pharm. (Pharmacy Practice)

Course Code	Course	Credit Hours	Credit Points	Hrs./wk	Marks
	Semeste	er I			
MPP 101T	Clinical Pharmacy Practice	4	4	4	100
MPP 102T	Pharmacotherapeutics-I	4	4	4	100
MPP 103T	Hospital & Community Pharmacy	4	4	4	100
MPP 104T	Clinical Research	4	4	4	100
MPP 105P	Pharmacy Practice Practical I	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Semeste	er II			
MPP 201T	Principles of Quality Use of Medicines	4	4	4	100
MPP 102T	Pharmacotherapeutics II	4	4	4	100
MPP 203T	Clinical Pharmacokinetics and Therapeutic Drug Monitoring	4	4	4	100
MPP 204T	Pharmacoepidemiology & Pharmacoeconomics	4	4	4	100
MPP 205P	Pharmacy Practice Practical II	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 10: Course of study for (Pharmacology)

Course	Table - TO. Course of St	Credit	Credit		
Code	Course	Hours	Points	Hrs./wk	Marks
	Seme	ster I			
MPL	Modern Pharmaceutical	4	4	4	100
101T	Analytical Techniques	4	4	4	100
MPL 102T	Advanced Pharmacology-I	4	4	4	100
MPL 103T	Pharmacological and Toxicological Screening Methods-I	4	4	4	100
MPL 104T	Cellular and Molecular Pharmacology	4	4	4	100
MPL 105P	Pharmacology Practical I	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Semes	ster II			
MPL 201T	Advanced Pharmacology II	4	4	4	100
MPL 202T	Pharmacological and Toxicological Screening Methods-II	4	4	4	100
MPL 203T	Principles of Drug Discovery	4	4	4	100
MPL 204T	Experimental Pharmacology practical- II	4	4	4	100
MPL 205P	Pharmacology Practical II	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 11: Course of study for M. Pharm. (Pharmacognosy)

Course Code	Course	Credit Hours	Credit Points	Hrs./wk	Marks
	Semes	ter I			
MPG101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MPG102T	Advanced Pharmacognosy-1	4	4	4	100
MPG103T	Phytochemistry	4	4	4	100
MPG104T	Industrial Pharmacognostical Technology	4	4	4	100
MPG105P	Pharmacognosy Practical I	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Semes	ter II			
MPG201T	Medicinal Plant biotechnology	4	4	4	100
MPG102T	Advanced Pharmacognosy-II	4	4	4	100
MPG203T	Indian system of medicine	4	4	4	100
MPG204T	Herbal cosmetics	4	4	4	100
MPG205P	Pharmacognosy Practical II	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 12: Course of study for M. Pharm. III Semester (Common for All Specializations)

Course Code	Course	Credit Hours	Credit Points
MRM 301T	Research Methodology and Biostatistics*	4	4
-	Journal club	1	1
-	Discussion / Presentation (Proposal Presentation)	2	2
-	Research Work	28	14
	Total	35	21

^{*} Non University Exam

Table - 13: Course of study for M. Pharm. IV Semester (Common for All Specializations)

Course Code	Course	Credit Hours	Credit Points
-	Journal Club	1	1
-	Research Work	31	16
-	Discussion/Final Presentation	3	3
	Total	35	20

Table - 14: Semester wise credits distribution

Table - 14. Selliestel Wise cleuits dis	
Semester	Credit Points
I	26
II	26
III	21
IV	20
Co-curricular Activities (Attending Conference, Scientific Presentations and Other Scholarly Activities)	Minimum=02 Maximum=07*
Total Credit Points	Minimum=95 Maximum=100*

^{*}Credit Points for Co-curricular Activities

Table - 15: Guidelines for Awarding Credit Points for Co-curricular Activities

Name of the Activity	Maximum Credit Points Eligible / Activity
Participation in National Level Seminar/Conference/Workshop/Symposium/ Training Programs (related to the specialization of the student)	01
Participation in international Level Seminar/Conference/Workshop/Symposium/ Training Programs (related to the specialization of the student)	02
Academic Award/Research Award from State Level/National Agencies	01
Academic Award/Research Award from International Agencies	02
Research / Review Publication in National Journals (Indexed in Scopus / Web of Science)	01
Research / Review Publication in International Journals (Indexed in Scopus / Web of Science)	02

Note: International Conference: Held Outside India

International Journal: The Editorial Board Outside India

*The credit points assigned for extracurricular and or co-curricular activities shall be given by the Principals of the colleges and the same shall be submitted to the University. The criteria to acquire this credit point shall be defined by the colleges from time to time.

10. Program Committee

- 1. The M. Pharm. programme shall have a Programme Committee constituted by the Head of the institution in consultation with all the Heads of the departments.
- 2. The composition of the Programme Committee shall be as follows: A teacher at the cadre of Professor shall be the Chairperson; One Teacher from eachM.Pharm specialization and four student representatives (two from each academic year), nominated by the Head of the institution.
- 3. Duties of the Programme Committee:
- i. Periodically reviewing the progress of the classes.
- ii. Discussing the problems concerning curriculum, syllabus and the conduct of classes.
- iii. Discussing with the course teachers on the nature and scope of assessment for the course and the same shall be announced to the students at the beginning of respective semesters.

- iv. Communicating its recommendation to the Head of the institution on academic matters.
- v. The Programme Committee shall meet at least twice in a semester preferably at the end of each sessionalexam and before the end semester exam.

11. Examinations/Assessments

The schemes for internal assessment and end semester examinations are given in Table – 16.

11.1. End semester examinations

The End Semester Examinations for each theory and practical coursethrough semesters I to IVshall beconducted by the respective university except for the subject with asterix symbol (*) in table I and II for which examinations shall be conducted by the subject experts at college level and the marks/grades shall be submitted to the university.

Tables – 1616 : Schemes for internal assessments and end semester
(Pharmaceutics- MPH)

		(Pharm	aceulic	:s- MPH)		_		
Course		Inte	nal Ass	sessment		End Semester Exams		Tota l
Code	Course	Continu ous Mode		sional ams Durati on	Tot al	Mar ks	Durati on	Mar ks
		SE	EMESTE	R I				
MPH 101T	Modern Pharmaceuti cal Analytical Techniques	10	15	1 Hr	25	75	3 Hrs	100
MPH 102T	Drug Delivery System	10	15	1 Hr	25	75	3 Hrs	100
MPH 103T	Modern Pharmaceuti cs	10	15	1 Hr	25	75	3 Hrs	100
MPH 104T	Regulatory Affair	10	15	1 Hr	25	75	3 Hrs	100
MPH 105P	Pharmaceuti cs Practical I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
			otal					650
		SE	MESTE	R II				
MPH 201T	Molecular Pharmaceuti cs(Nano Tech and Targeted DDS)	10	15	1 Hr	25	75	3 Hrs	100
MPH 202T	Advanced Biopharmac eutics & Pharmacokin etics	10	15	1 Hr	25	75	3 Hrs	100
MPH 203T	Computer Aided Drug Delivery System	10	15	1 Hr	25	75	3 Hrs	100
MPH	Cosmetic	10	15	1 Hr	25	75	3 Hrs	100

204T	and Cosmeceutic als							
MPH 205P	Pharmaceuti cs Practical I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
Total								650

Tables - 1717 : Schemes for internal assessments and end semester (Industrial Pharmacy- MIP)

				macy- wii	- /			
		Int	ernal A	ssessmen	t	Sem	End Semester Exams	
Course Code	Course	Conti nuou	Ex	sional ams	Tot	Mar	Dura	Total Marks
		s	Mar	Durati	al	ks	tion	
		Mode	ks	on				
		S	SEMEST	ER I				
MIP101T	Modern Pharmaceutic al Analytical Techniques	10	15	1 Hr	25	75	3 Hrs	100
MIP102T	Pharmaceutic al Formulation Development	10	15	1 Hr	25	75	3 Hrs	100
MIP103T	Novel drug delivery systems	10	15	1 Hr	25	75	3 Hrs	100
MIP104T	Intellectual Property Rights	10	15	1 Hr	25	75	3 Hrs	100
MIP105P	Industrial Pharmacy Practical I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
			otal					650
		S	EMEST	ER II				
MIP201T	Advanced Biopharmaceu tics and Pharmacokine tics	10	15	1 Hr	25	75	3 Hrs	100
MIP202T	Scale up and Technology Transfer	10	15	1 Hr	25	75	3 Hrs	100
MIP203T	Pharmaceutic al Production Technology	10	15	1 Hr	25	75	3 Hrs	100
MIP204T	Entrepreneurs hip Management	10	15	1 Hr	25	75	3 Hrs	100

MIP205P	Industrial Pharmacy Practical II	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
Total							650	

(Pharmaceutical Chemistry-MPC)

	,,,			ssessmen	it	En Seme Exa	ester	
Course Code	Course	Cont inuo		sional ams	Tot	Mar	Du	Total Marks
		us Mod e	Mar ks	Durati on	al	ks	rati on	
			SEMEST	ΓER I				
MPC101T	Modern Pharmaceutic al Analytical Techniques	10	15	1 Hr	25	75	3 Hrs	100
MPC102T	Advanced Organic Chemistry -I	10	15	1 Hr	25	75	3 Hrs	100
MPC103T	Advanced Medicinal chemistry	10	15	1 Hr	25	75	3 Hrs	100
MPC104T	Chemistry of Natural Products	10	15	1 Hr	25	75	3 Hrs	100
MPC105P	Pharmaceutic al Chemistry Practical I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
			otal					650
		,	SEMEST	ER II				
MPC201T	Advanced Spectral Analysis	10	15	1 Hr	25	75	3 Hrs	100
MPC202T	Advanced Organic Chemistry -II	10	15	1 Hr	25	75	3 Hrs	100
MPC203T	Computer Aided Drug Design	10	15	1 Hr	25	75	3 Hrs	100
MPC204T	Pharmaceutic al Process Chemistry	10	15	1 Hr	25	75	3 Hrs	100
MPC205P	Pharmaceutic	20	30	6 Hrs	50	100	6	150

al Chemistry Practical II						Hrs	
Seminar - /Assignment	-	-	-	-	-	-	100
Total							650

Tables - 19: Schemes for internal assessments and end semester examinations (Pharmaceutical Analysis-MPA)

Course Code	Course	Inte	ernal As	sessment	End Semester Exams		Total		
		Contin uous Mode	Ex Mark	sional ams Durati	Tot al	Mark s	Dura tion	Marks	
			s SEMEST	On FFR I					
Modern									
MPA101T	Pharmaceuti cal Analysis	10	15	1 Hr	25	75	3 Hrs	100	
MPA102T	Pharmaceuti cal Analysis			1 Hr	25	75	3 Hrs	100	
MPA103T	Pharmaceuti cal Validation	10	15	1 Hr	25	75	3 Hrs	100	
MPA104T	Food Analysis	10	15	1 Hr	25	75	3 Hrs	100	
MPA105P	Pharmaceuti cal Analysis- I			6 Hrs	50	100	6 Hrs	150	
-	Seminar /Assignment	-	-	-	-	-	-	100	
	Total								
		,	SEMEST	ER II					
MPA201T	Advanced Instrumental Analysis	10	15	1 Hr	25	75	3 Hrs	100	
MPA202T	Modern Bio- Analytical Techniques	10	15	1 Hr	25	75	3 Hrs	100	
MPA203T	Quality Control and Quality	10	15	1 Hr	25	75	3 Hrs	100	

	Assurance							
MPA204T	Herbal and Cosmetic analysis	10	15	1 Hr	25	75	3 Hrs	100
MPA205P	Pharmaceuti cal Analysis- II	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
Total							650	

Tables - 20: Schemes for internal assessments and end semester examinations (Pharmaceutical Quality Assurance-MQA)

(Pharmaceutical Quality Assurance-MQA) End									
		Internal Assessment					Semester		
Cours							Exams		
e	Course			Sec	sional				Total Marks
Code	204150	Con	ti	Sessional Exams		T	Mar	Dura	
			S M	Mar Durat		ot	ks	tion	
			A	s	on	al	KS	tion	
		SEMESTER I							
	Modern								
MQA1	Pharmaceutical								
01T	Analytical	10	15		1 Hr	25	75	3 Hrs	100
	Techniques								
MQA1	Quality Management								
02T	System	10	15		1 Hr	25	75	3 Hrs	100
MQA1	Quality Control and	1.0	1.5			2.5	7.5	2.11	100
03T	Quality Assurance	10	15		1 Hr	25	75	3 Hrs	100
MQA1	Product								
04T	Development and	10	15		1 Hr	25	75	3 Hrs	100
011	Technology Transfer								
MQA1	Pharmaceutical								
05P	Quality Assurance	20	30		6 Hrs	50	100	6 Hrs	150
	Practical I			_					
-	Seminar	_	_		_	_	_	_	100
/Assignment		Total							
Total 650 SEMESTER II									
MQA2	Hazards and Safety	ĸ.	ENIES	ILK	. 11				
01T	Management	10	15		1 Hr	25	75	3 Hrs	100
MQA2	Pharmaceutical								
02T	Validation	10	15		1 Hr	25	75	3 Hrs	100
	Audits and								
MQA2	Regulatory	10	15		1 Hr	25	75	3 Hrs	100
03T	Compliance	'	'			23	,,	31113	100
MOAC	Pharmaceutical								
MQA2	Manufacturing	10	15		1 Hr	25	75	3 Hrs	100
04T	Technology							55	
MQA2	Pharmaceutical								
05P	Quality Assurance	20	30		6 Hrs	50	100	6 Hrs	150
031	Practical II								
_	Seminar				_	_	_	_	100
Assignment									
Total								650	

Tables - 21: Schemes for internal assessments and end semester examinations (Pharmaceutical Regulatory Affairs-MRA)

	(i iidiii	laccane	ui itego	natory An	ans wi	Till the state of	nd	
		In	ternal A	ssessmen	ıt	Semester Exams		
Course Code	Course	Cont inuo		sional ams	Tot	Mar	Dura	Total Marks
		us Mod e	Mar ks	Durati on	al	ks	tion	
			SEMEST	ΓER Ι				
MRA10 1T	Good Pharmaceutical Practices	10	15	1 Hr	25	75	3 Hrs	100
MRA10 2T	Documentation and Regulatory Writing	10	15	1 Hr	25	75	3 Hrs	100
MRA10 3T	Clinical Research Regulations	10	15	1 Hr	25	75	3 Hrs	100
MRA10 4T	Regulations and Legislation for Drugs & Cosmetics, Medical Devices, Biologicals & Herbals, and Food & Nutraceuticals In India and Intellectual Property Rights	10	15	1 Hr	25	75	3 Hrs	100
MRA10 5T	Pharmaceutical Regulatory Affairs Practical I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
			otal					650
	B 1.		SEMEST	ER II				
MRA20 1T	Regulatory Aspects of Drugs & Cosmetics	10	15	1 Hr	25	75	3 Hrs	100

MRA20 2T	Regulatory Aspects of Herbal & Biologicals	10	15	1 Hr	25	75	3 Hrs	100				
MRA20 3T	Regulatory Aspects of Medical Devices	10	15	1 Hr	25	75	3 Hrs	100				
MRA20 4T	Regulatory Aspects of Food & Nutraceuticals	10	15	1 Hr	25	75	3 Hrs	100				
MRA20 5P	Pharmaceutical Regulatory Affairs Practical II	20	30	6 Hrs	50	100	6 Hrs	150				
-	Seminar /Assignment	-	-	-	-	-	-	100				
		Т	otal (Total					

Tables - 22: Schemes for internal assessments and end semester examinations (Pharmaceutical Biotechnology-MPB)

				ssessmen	•		emester ams	Tota
Course Code	Course	Conti nuous Mode		sional ams Durati on	Tot al	Mar ks	Durati on	l Mar ks
		S	EMEST	ER I				
MPB10 1T	Modern Pharmaceutical Analytical Techniques	10	15	1 Hr	25	75	3 Hrs	100
MPB10 2T	Microbial And Cellular Biology	10	15	1 Hr	25	75	3 Hrs	100
MPB10 3T	Bioprocess Engineering and Technology	10	15	1 Hr	25	75	3 Hrs	100
MPB10 4T	Advanced Pharmaceutical Biotechnology	10	15	1 Hr	25	75	3 Hrs	100
MPB10 5P	Pharmaceutical Biotechnology Practical I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
			otal					650
		SI	EMESTI	ER II				
MPB20 1T	Proteins and protein Formulation	10	15	1 Hr	25	75	3 Hrs	100
MPB20 2T	Immunotechnolo av	10	15	1 Hr	25	75	3 Hrs	100
MPB20 3T	Bioinformatics and Computer Technology	10	15	1 Hr	25	75	3 Hrs	100
MPB20 4T	Biological Evaluation of Drug Therapy	10	15	1 Hr	25	75	3 Hrs	100
MPB20 5P	Pharmaceutical Biotechnology Practical II	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
		Т	otal					650

Tables – 23: Schemes for internal assessments and end semester examinations (Pharmacy Practice-MPP)

	(11			ssessme		End Semester		
Cours							ams	Tot
e Code	Course	Conti	Е	ssional xams	Tot	Mar	Durati	al Mar ks
		nuous Mode	Mai ks	Dur atio n	al	ks	on	KS
		SEN	/IESTEI	RI				
MPP10 1T	Clinical Pharmacy Practice	10	15	1 Hr	25	75	3 Hrs	100
MPP10 2T	Pharmacotherapeutic s-I	10	15	1 Hr	25	75	3 Hrs	100
MPP10 3T	Hospital & Community Pharmacy	10	15	1 Hr	25	75	3 Hrs	100
MPP10 4T	Clinical Research	10	15	1 Hr	25	75	3 Hrs	100
MPP10 5P	Pharmacy Practice Practical I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
		Tot	al					650
		SEM	1ESTEF	RII				
MPP20 1T	Principles of Quality Use of Medicines	10	15	1 Hr	25	75	3 Hrs	100
MPP10 2T	Pharmacotherapeutic s II	10	15	1 Hr	25	75	3 Hrs	100
MPP20 3T	Clinical Pharmacokinetics and Therapeutic Drug Monitoring	10	15	1 Hr	25	75	3 Hrs	100
MPP20 4T	Pharmacoepidemiolo gy & Pharmacoeconomics	10	15	1 Hr	25	75	3 Hrs	100
MPP20 5P	Pharmacy Practice Practical II	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
		Tot	al					650

Tables - 24: Schemes for internal assessments and end semester examinations (Pharmacology-MPL)

				ssessmen	t		emester	Tot
Course Code	Course	Conti nuous Mode		sional ams Durati on	Tot al	Mar ks	Durati on	al Mar ks
		S	EMESTI	ER I				
MPL10 1T	Modern Pharmaceutical Analytical Techniques	10	15	1 Hr	25	75	3 Hrs	100
MPL10 2T	Advanced Pharmacology-I	10	15	1 Hr	25	75	3 Hrs	100
MPL10 3T	Pharmacological and Toxicological Screening Methods-I	10	15	1 Hr	25	75	3 Hrs	100
MPL10 4T	Cellular and Molecular Pharmacology	10	15	1 Hr	25	75	3 Hrs	100
MPL10 5P	Experimental Pharmacology - I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
		T	otal					650
		SI	EMESTE	ER II				
MPL20 1T	Advanced Pharmacology II	10	15	1 Hr	25	75	3 Hrs	100
MPL10 2T	Pharmacological and Toxicological Screening Methods-II	10	15	1 Hr	25	75	3 Hrs	100
MPL20 3T	Principles of Drug Discovery	10	15	1 Hr	25	75	3 Hrs	100
MPL20 4T	Clinical research and pharmacovigilanc e	10	15	1 Hr	25	75	3 Hrs	100
MPL20 5P	Experimental Pharmacology - II	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
		Т	otal					650

Tables – 25: Schemes for internal assessments and end semester examinations (Pharmacognosy-MPG)

				sessment			emester	m .
Course Code	Course	Contin uous Mode		sional ams Durati on	Tot al	Mar ks	Durati on	Tota 1 Mar ks
		S	SEMEST	ER I				
MPG10 1T	Modern Pharmaceutica I Analytical Techniques	10	15	1 Hr	25	75	3 Hrs	100
MPG10 2T	Advanced Pharmacognos y-1	10	15	1 Hr	25	75	3 Hrs	100
MPG10 3T	Phytochemistr v	10	15	1 Hr	25	75	3 Hrs	100
MPG10 4T	Industrial Pharmacognos tical Technology	10	15	1 Hr	25	75	3 Hrs	100
MPG10 5P	Pharmacognos y Practical I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
		٦	Γotal					650
		S	EMEST	ER II				
MPG20 1T	Medicinal Plant biotechnology	10	15	1 Hr	25	75	3 Hrs	100
MPG10 2T	Advanced Pharmacognos y-II	10	15	1 Hr	25	75	3 Hrs	100
MPG20 3T	Indian system of medicine	10	15	1 Hr	25	75	3 Hrs	100
MPG20 4T	Herbal cosmetics	10	15	1 Hr	25	75	3 Hrs	100
MPG20 5P	Pharmacognos y Practical II	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
		٦	Γotal					650

Tables - 26: Schemes for internal assessments and end semester examinations (Semester III&IV)

		Int	Internal Assessment			End Semester Exams		Tota
Course Code	Course	Conti nuou		sional ams	Tot	Mark	Durati	l Mark s
		s Mode	Mark s	Durati on	al	s	on	3
			SEMES	ΓER III				
MRM30 1T	Research Methodology and Biostatistics*	10	15	1 Hr	25	75	3 Hrs	100
-	Journal club	-	-	-	25	-	-	25
-	Discussion / Presentation (Proposal Presentation)	-	-	-	50	-	-	50
-	Research work*	-	-	-	-	350	1 Hr	350
			Total					525
		ı	SEMEST	TER IV				
-	Journal club	-	-	-	25	-	-	25
-	Discussion / Presentation (Proposal Presentation)	-	-	-	75	-	-	75
-	Research work and Colloquium	-	-	-	-	400	1 Hr	400
			Total					500

^{*}Non University Examination

11.2. Internal assessment: Continuous mode

The marks allocated for Continuous mode of Internal Assessment shall be awarded as per the scheme given below.

Table - 27: Scheme for awarding internal assessment: Continuous mode

Theory	
Criteria	Maximum Marks
Attendance (Refer Table – 28)	8
Student - Teacher interaction	2
Total	10
Practical	
Attendance (Refer Table – 28	10
Based on Practical Records, Regular viva voce, etc.	10
Total	20

Table - 28: Guidelines for the allotment of marks for attendance

Percentage of Attendance	Theory	Practical
95 – 100	8	10
90 – 94	6	7.5
85 – 89	4	5
80 – 84	2	2.5
Less than 80	0	0

11.2.1. Sessional Exams

Two sessional exams shall be conducted for each theory / practical course as per the schedule fixed by the college(s). The scheme of question paper for theory and practical sessional examinations is given in the table. The average marks of two sessional exams shall be computed for internal assessment as per the requirements given in tables.

12. Promotion and award of grades

A student shall be declared PASS and eligible for getting grade in a course of M.Pharm.programme if he/she secures at least 50% marks in that particular courseincluding internal assessment.

13. Carry forward of marks

In case a student fails to secure the minimum 50% in any Theory or Practical course as specified in 12, then he/she shall reappear for the end semester examination of that course. However his/her marks of the Internal Assessment shall be carried over and he/she shall be entitled for grade obtained by him/her on passing.

14. Improvement of internal assessment

A student shall have the opportunity to improve his/her performance only once in the sessional exam component of the internal assessment. The re-conduct of the sessional exam shall be completed before the commencement of next end semester theory examinations.

15. Reexamination of end semester examinations

Reexamination of end semester examination shall be conducted as per the schedule given in table 29. The exact dates of examinations shall be notified from time to time.

Table - 29: Tentative schedule of end semester examinations

Semester	For Regular Candidates	For Failed Candidates
I and III	November / December	May / June
II and IV	May / June	November / December

16. Allowed to keep terms (ATKT):

No student shall be admitted to any examination unless he/she fulfills the norms given in 6. ATKT rules are applicable as follows:

A student shall be eligible to carry forward all the courses of I and IIsemesters till the III semester examinations. However, he/she shall not be eligible to attend the courses of IV semester until all the courses of I, II and III semesters are successfully completed.

A student shall be eligible to get his/her CGPA upon successful completion of the courses of I to IV semesters within the stipulated time period as per the norms.

Note: Grade AB should be considered as failed and treated as one head for deciding ATKT. Such rules are also applicable for those students who fail to register for examination(s) of any course in any semester.

17. Grading of performances

17.1. Letter grades and grade points allocations:

Based on the performances, each student shall be awarded a final letter grade at the end of the semester for each course. The letter grades and their corresponding grade points are given in Table – 30.

Table – 30: Letter grades and grade points equivalent to Percentage of marks and performances

Percentage of Marks Obtained	Letter Grade	Grade Point	Performance
90.00 - 100	0	10	Outstanding
80.00 - 89.99	Α	9	Excellent
70.00 – 79.99	В	8	Good
60.00 - 69.99	С	7	Fair
50.00 - 59.99	D	6	Average
Less than 50	F	0	Fail
Absent	AB	0	Fail

A learner who remains absent for any end semester examination shall be assigned a letter grade of AB and a corresponding grade point of zero. He/she should reappear for the said evaluation/examination in due course.

18. The Semester grade point average (SGPA)

The performance of a student in a semester is indicated by a number called 'Semester Grade Point Average' (SGPA). The SGPA is the weighted average of the grade points obtained in all the courses by the student during the semester. For example, if a student takes five courses (Theory/Practical) in a semester with credits C1, C2, C3 and C4 and the student's grade points in these courses are G1, G2, G3 and G4, respectively, and then students' SGPA is equal to:

$$SGPA = C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4$$

$$C_1 + C_2 + C_3 + C_4$$

The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester shall take into consideration the F and ABS grade awarded in that semester. For example if a learner has a F or ABS grade in course 4, the SGPA shall then be computed as:

$$SGPA = \begin{array}{c} C_1G_1 + C_2G_2 + C_3G_3 + C_4* ZERO \\ \\ C_1 + C_2 + C_3 + C_4 \end{array}$$

19. Cumulative Grade Point Average (CGPA)

The CGPA is calculated with the SGPA of all the IV semesters to two decimal points and is indicated in final grade report card/final transcript showing the grades of all IV semesters and their courses. The CGPA shall reflect the failed statusin case of F grade(s), till the course(s) is/are passed. When the course(s) is/are passedby obtaining a pass grade on subsequent examination(s) the CGPA

shall only reflect the new grade and not the fail grades earned earlier. The CGPA is calculated as:

$$CGPA = \begin{array}{c} C_1S_1 + C_2S_2 + C_3S_3 + C_4S_4 \\ \\ C_1 + C_2 + C_3 + C_4 \end{array}$$

where C_1 , C_2 , C_3 ,... is the total number of credits for semester I,II,III,... and S_1,S_2 , S_3 ,... is the SGPA of semester I,II,III,.....

20. Declaration of class

The class shall be awarded on the basis of CGPA as follows:

First Class with Distinction = CGPA of. 7.50 and above First Class = CGPA of 6.00 to 7.49 Second Class = CGPA of 5.00 to 5.99

21. Project work

All the students shall undertake a project under the supervision of a teacher in Semester III to IV and submit a report. 4 copies of the project report shall be submitted (typed & bound copy not less than 75 pages).

The internal and external examiner appointed by the University shall evaluate the project at the time of the Practical examinations of other semester(s). The projects shall be evaluated as per the criteria given below.

Evaluation of Dissertation Book:

Objective(s) of the work done	50 Marks
Methodology adopted	150 Marks
Results and Discussions	250 Marks
Conclusions and Outcomes	50 Marks

500 Marks	
	500 Marks

Evaluation of Presentation:

Presentation of work	100 Marks
Communication skills	50 Marks
Question and answer skills	100 Marks

Total 250 N	Marks
-------------	-------

22. Award of Ranks

Ranks and Medals shall be awarded on the basis of final CGPA. However, candidates who fail in one or more courses during the M.Pharm program shall not be eligible for award of ranks. Moreover, the candidates should have completed the M. Pharm program in minimum prescribed number of years, (two years) for the award of Ranks.

23. Award of degree

Candidates who fulfill the requirements mentioned above shall be eligible for award of degree during the ensuing convocation.

24. Duration for completion of the program of study

The duration for the completion of the program shall be fixed as double the actual duration of the program and the students have to pass within the said period, otherwise they have to get fresh Registration.

25. Revaluation I Retotaling of answer papers

There is no provision for revaluation of the answer papers in any examination. However, the candidates can apply for retotaling by paying prescribed fee.

26. Re-admission after break of study

Candidate who seeks re-admission to the program after break of study has to get the approval from the university by paying a condonation fee.

PHARMACEUTICS(MPH)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MPH 101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives

After completion of course student is able to know,

- Chemicals and Excipients
- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 HOURS

- a. UV-Visible spectroscopy: Introduction, Theory, Laws, 11
 Instrumentation associated with UV-Visible spectroscopy, Hrs
 Choice of solvents and solvent effect and Applications of UV Visible spectroscopy.
 - b. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier -Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy
 - c. Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
 - d. Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.
- 2 NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

11 Hrs

- 3 Mass Spectroscopy: Principle, Theory, Instrumentation of Mass 11 Spectroscopy, Different types of ionization like electron impact, Hrs chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy
- 4 Chromatography: Principle, apparatus, instrumentation, 11 chromatographic parameters, factors affecting resolution and Hrs applications of the following:
 - a) Paper chromatography b) Thin Layer chromatography
 - c) Ion exchange chromatography d) Column chromatography
 - e) Gas chromatography f) High Performance Liquid chromatography
 - g) Affinity chromatography
- 5 a. Electrophoresis: Principle, Instrumentation, Working 11 conditions, factors affecting separation and applications of the Hrs following:
 - a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso electric focusing
 - b. X ray Crystallography: Production of X rays, Different X ray diffraction methods, Bragg's law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.
- 6 Immunological assays : RIA (Radio immuno assay), ELISA, 5 Hrs Bioluminescence assays.

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11. Marcel Dekker Series

DRUG DELIVERY SYSTEMS (MPH 102T)

SCOPE

This course is designed to impart knowledge on the area of advances in novel drug delivery systems.

OBJECTIVES

Upon completion of the course, student shall be able to understand

The various approaches for development of novel drug delivery systems.

The criteria for selection of drugs and polymers for the development of delivering system

The formulation and evaluation of Novel drug delivery systems..

THEORY 60 Hrs

- 1. Release(SR) and Controlled Release Sustained (CR) formulations: Introduction & basic concepts, advantages disadvantages, factors influencing, Physicochemical & biological approaches for SR/CR formulation, Mechanism of Drug Delivery from SR/CR formulation. Polymers: introduction, definition, classification, properties and application Dosage Forms for Personalized Medicine: Introduction. Definition. Pharmacogenetics, Categories of Patients for Personalized Medicines: Customized drug delivery systems, Bioelectronic Medicines, 3D printing of pharmaceuticals, Telepharmacy.
- 2 Rate Controlled Drug Delivery Systems: Principles & 10 Fundamentals, Types, Activation; Modulated Drug Delivery Hrs Systems; Mechanically activated, pH activated, Enzyme activated, and Osmotic activated Drug Delivery Systems Feedback regulated Drug Delivery Systems; Principles & Fundamentals.
- 3 Gastro-Retentive Drug Delivery Systems: Principle, concepts 10 advantages and disadvantages, Modulation of GI transit time Hrs approaches to extend GI transit. Buccal Drug Delivery Systems: Principle of muco adhesion, advantages and disadvantages, Mechanism of drug permeation, Methods of formulation and its evaluations.
- 4 Occular Drug Delivery Systems: Barriers of drug permeation, Methods to overcome barriers.
 Hrs

- 5 Transdermal Drug Delivery Systems: Structure of skin and 10 barriers, Penetration enhancers, Transdermal Drug Delivery Hrs Systems, Formulation and evaluation.
- 6 Protein and Peptide Delivery: Barriers for protein delivery. 08 Formulation and Evaluation of delivery systems of proteins and Hrs other macromolecules.
- Vaccine delivery systems: Vaccines, uptake of antigens, single shot vaccines, mucosal and transdermal delivery of vaccines.

1. Y W. Chien, Novel Drug Delivery Systems, 2nd edition, revised and expanded,

Marcel Dekker, Inc., New York, 1992.

- 2. Robinson, J. R., Lee V. H. L, Controlled Drug Delivery Systems, Marcel Dekker, Inc., New York, 1992.
- 3. Encyclopedia of controlled delivery, Editor- Edith Mathiowitz, Published by WileyInterscience Publication, John Wiley and Sons, Inc, New York! Chichester/Weinheim
- 4. N.K. Jain, Controlled and Novel Drug Delivery, CBS Publishers & Distributors, New Delhi, First edition 1997 (reprint in 2001).
- 5. S.P.Vyas and R.K.Khar, Controlled Drug Delivery concepts and advances, Vallabh Prakashan, New Delhi, First edition 2002

JOURNALS

- 1. Indian Journal of Pharmaceutical Sciences (IPA)
- 2. Indian drugs (IDMA)
- 3. Journal of controlled release (Elsevier Sciences) desirable
- 4. Drug Development and Industrial Pharmacy (Marcel & Decker) desirable

MODERN PHARMACEUTICS (MPH 103T)

Scope

Course designed to impart advanced knowledge and skills required to learn various aspects and concepts at pharmaceutical industries

Objectives

Upon completion of the course, student shall be able to understand

- The elements of preformulation studies.
- The Active Pharmaceutical Ingredients and Generic drug Product development
- Industrial Management and GMP Considerations.
- Optimization Techniques & Pilot Plant Scale Up Techniques
- Stability Testing, sterilization process & packaging of dosage forms.

THEORY 60 HRS

- a. Preformation Concepts Drug Excipient interactions 10 different methods, kinetics of stability, Stability testing. Theories of Hrs dispersion and pharmaceutical Dispersion (Emulsion and Suspension, SMEDDS) preparation and stability Large and small volume parental physiological and formulation consideration, Manufacturing and evaluation.
 - b. Optimization techniques in Pharmaceutical Formulation: 10 Concept and parameters of optimization, Optimization techniques in pharmaceutical formulation and processing. Statistical design, Response surface method, Contour designs, Factorial designs and application in formulation
- Validation: Introduction to Pharmaceutical Validation, Scope & 10 merits of Validation, Validation and calibration of Master plan, Hrs ICH & WHO guidelines for calibration and validation of equipments, Validation of specific dosage form, Types of validation. Government regulation, Manufacturing Process Model, URS, DQ, IQ, OQ & P.Q. of facilities.
- 3 cGMP & Industrial Management: Objectives and policies of 10 current good manufacturing practices, layout of buildings, services, equipments and their maintenance Production management: Production organization, , materials management, handling and transportation, inventory management and control, production and planning control, Sales forecasting, budget and cost control, industrial and personal relationship. Concept of Total Quality Management.

- 4 Compression and compaction: Physics of tablet compression, 10 compression, consolidation, effect of friction, distribution of Hrs forces, compaction profiles. Solubility.
- 5 Study of consolidation parameters; Diffusion parameters, 10 Dissolution parameters and Pharmacokinetic parameters, Heckel Hrs plots, Similarity factors f2 and f1, Higuchi and Peppas plot, Linearity Concept of significance, Standard deviation, Chi square test, students T-test, ANOVA test.

- 1. Theory and Practice of Industrial Pharmacy By Lachmann and Libermann
- 2. Pharmaceutical dosage forms: Tablets Vol. 1-3 by Leon Lachmann.
- 3. Pharmaceutical Dosage forms: Disperse systems, Vol, 1-2; By Leon Lachmann.
- 4. Pharmaceutical Dosage forms: Parenteral medications Vol. 1-2; By Leon Lachmann.
- 5. Modern Pharmaceutics; By Gillbert and S. Banker.
- 6. Remington's Pharmaceutical Sciences.
- Advances in Pharmaceutical Sciences Vol. 1-5; By H.S. Bean & A.H. Beckett.
- 8. Physical Pharmacy; By Alfred martin
- 9. Bentley's Textbook of Pharmaceutics by Rawlins.
- 10. Good manufacturing practices for Pharmaceuticals: A plan for total quality control, Second edition; By Sidney H. Willig.
- 11. Quality Assurance Guide; By Organization of Pharmaceutical producers of India.
- 12.Drug formulation manual; By D.P.S. Kohli and D.H.Shah. Eastern publishers, New Delhi.
- 13. How to practice GMPs; By P.P.Sharma. Vandhana Publications, Agra.
- 14. Pharmaceutical Process Validation; By Fra. R. Berry and Robert A. Nash.
- 15. Pharmaceutical Preformulations; By J.J. Wells.
- 16. Applied production and operations management; By Evans, Anderson, Sweeney and Williams.
- 17. Encyclopaedia of Pharmaceutical technology, Vol I III.

REGULATORY AFFAIRS (MPH 104T)

Scope

Course designed to impart advanced knowledge and skills required to learn the concept of generic drug and their development, various regulatory filings in different countries, different phases of clinical trials and submitting regulatory documents: filing process of IND, NDA and ANDA

- To know the approval process of
- To know the chemistry, manufacturing controls and their regulatory importance
- To learn the documentation requirements for
- To learn the importance and

Objectives:

Upon completion of the course, it is expected that the students will be able to understand

- The Concepts of innovator and generic drugs, drug development process
- The Regulatory guidance's and guidelines for filing and approval process
- Preparation of Dossiers and their submission to regulatory agencies in different countries
- Post approval regulatory requirements for actives and drug products
- Submission of global documents in CTD/ eCTD formats
- Clinical trials requirements for approvals for conducting clinical trials
- Pharmacovigilence and process of monitoring in clinical trials.

THEORY 60 Hrs

- 1. a. Documentation in Pharmaceutical industry: Master 12 formula record, DMF (Drug Master File), distribution records. Hrs Generic drugs product development Introduction , Hatch-Waxman act and amendments, CFR (CODE OF FEDERAL REGULATION) ,drug product performance, in-vitro, ANDA regulatory approval process, NDA approval process, BE and drug product assessment, in -vivo, scale up process approval changes, post marketing surveillance, outsourcing BA and BE to CRO.
 - b. Regulatory requirement for product approval: API, biologics, novel, therapies obtaining NDA, ANDA for generic drugs ways and means of US registration for foreign drugs

- 2 CMC, post approval regulatory affairs. Regulation for combination 12 products and medical devices.CTD and ECTD format, industry Hrs and FDA liaison. ICH Guidelines of ICH-Q, S E, M. Regulatory requirements of EU, MHRA, TGA and ROW countries.
- 3 Non clinical drug development: Global submission of IND, 12 NDA, ANDA. Investigation of medicinal products dossier, dossier Hrs (IMPD) and investigator brochure (IB).
- 4 Clinical trials: Developing clinical trial protocols. Institutional 12 review board/ independent ethics committee Formulation and Hrs working procedures informed Consent process and procedures. HIPAA- new, requirement to clinical study process, pharmacovigilance safety monitoring in clinical trials.

- 1. Generic Drug Product Development, Solid Oral Dosage forms, Leon Shargel and IsaderKaufer, Marcel Dekker series, Vol.143
- 2. The Pharmaceutical Regulatory Process, Second Edition Edited by Ira R. Berry and Robert P.Martin, Drugs and the Pharmaceutical Sciences, Vol. 185, Informa Health care Publishers.
- 3. New Drug Approval Process: Accelerating Global Registrations By Richard A Guarino, MD,5th edition, Drugs and the Pharmaceutical Sciences, Vol. 190.
- 4. Guidebook for drug regulatory submissions / Sandy Weinberg. By John Wiley & Sons.Inc.
- 5. FDA regulatory affairs: a guide for prescription drugs, medical devices, and biologics/edited By Douglas J. Pisano, David Mantus.
- 6. Clinical Trials and Human Research: A Practical Guide to Regulatory Compliance By Fay A.Rozovsky and Rodney K. Adams
- 7. www.ich.org/
- 8. www.fda.gov/
- 9. europa.eu/index_en.htm
- 10. https://www.tga.gov.au/tga-basics

PHARMACEUTICS PRACTICALS - I (MPH 105P)

- Analysis of pharmacopoeial compounds and their formulations by UV Vis spectrophotometer
- Simultaneous estimation of multi component containing formulations by UV spectrophotometry
- 3. Experiments based on HPLC
- 4. Experiments based on Gas Chromatography
- 5. Estimation of riboflavin/quinine sulphate by fluorimetry
- 6. Estimation of sodium/potassium by flame photometry
- 7. To perform In-vitro dissolution profile of CR/SR marketed formulation
- 8. Formulation and evaluation of sustained release matrix tablets
- 9. Formulation and evaluation osmotically controlled DDS
- 10. Preparation and evaluation of Floating DDS- hydro dynamically balanced DDS
- 11. Formulation and evaluation of Muco adhesive tablets.
- 12. Formulation and evaluation of trans dermal patches.
- 13. To carry out preformulation studies of tablets.
- 14. To study the effect of compressional force on tablets disintegration time.
- 15. To study Micromeritic properties of powders and granulation.
- 16. To study the effect of particle size on dissolution of a tablet.
- 17. To study the effect of binders on dissolution of a tablet.
- 18. To plot Heckal plot, Higuchi and peppas plot and determine similarity factors.

MOLECULAR PHARMACEUTICS (NANO TECHNOLOGY & TARGETED DDS) (NTDS) (MPH 201T)

Scope

This course is designed to impart knowledge on the area of advances in novel drug delivery systems.

Objectives

Upon completion of the course student shall be able to understand

- The various approaches for development of novel drug delivery systems.
- The criteria for selection of drugs and polymers for the development of NTDS
- The formulation and evaluation of novel drug delivery systems.

THEORY 60 Hrs

- 1. Targeted Drug Delivery Systems: Concepts, Events and 12 biological process involved in drug targeting. Tumor targeting and Hrs Brain specific delivery.
- 2 Targeting Methods: introduction preparation and evaluation. 12 Nano Particles & Liposomes: Types, preparation and evaluation. Hrs
- Micro Capsules / Micro Spheres: Types, preparation and 12 evaluation, Monoclonal Antibodies; preparation and application, Hrs preparation and application of Niosomes, Aquasomes, Phytosomes, Electrosomes.
- 4 Pulmonary Drug Delivery Systems : Aerosols, propellents, 12 ContainersTypes, preparation and evaluation, Intra Nasal Route Hrs Delivery systems; Types, preparation and evaluation.
- Nucleic acid based therapeutic delivery system: Gene therapy, 12 introduction (ex-vivo & in-vivo gene therapy). Potential target diseases for gene therapy (inherited disorder and cancer). Gene expression systems (viral and nonviral gene transfer). Liposomal gene delivery systems.

Biodistribution and Pharmacokinetics. knowledge of therapeutic antisense molecules and aptamers as drugs of future.

- 1. Y W. Chien, Novel Drug Delivery Systems, 2nd edition, revised and expanded, Marcel Dekker, Inc., New York, 1992.
- 2. S.P.Vyas and R.K.Khar, Controlled Drug Delivery concepts and advances, Vallabh Prakashan, New Delhi, First edition 2002.
- 3. N.K. Jain, Controlled and Novel Drug Delivery, CBS Publishers & Distributors, NewDelhi, First edition 1997 (reprint in 2001).

ADVANCED BIOPHARMACEUTICS & PHARMACOKINETICS (MPH 202T)

Scope

This course is designed to impart knowledge and skills necessary for dose calculations, dose adjustments and to apply biopharmaceutics theories in practical problem solving. Basic theoretical discussions of the principles of biopharmaceutics and pharmacokinetics are provided to help the students' to clarify the concepts.

Objectives

Upon completion of this course it is expected that students will be able understand,

- The basic concepts in biopharmaceutics and pharmacokinetics.
- The use raw data and derive the pharmacokinetic models and parameters the best describe the process of drug absorption, distribution, metabolism and elimination.
- The critical evaluation of biopharmaceutic studies involving drug product equivalency.
- The design and evaluation of dosage regimens of the drugs using pharmacokinetic and biopharmaceutic parameters.
- The potential clinical pharmacokinetic problems and application of basics of pharmacokinetic

THEORY 60 Hrs

12 1. Drug Absorption from the Gastrointestinal Tract: Gastrointestinal tract, Mechanism of drug absorption, Factors affecting drug absorption, pH-partition theory of drug absorption. Formuulation and physicochemical factors: Dissolution rate, Dissolution Noves-Whitney equation and drug process, dissolution, Factors affecting the dissolution rate. Gastrointestinal absorption: role of the dosage form: Solution (elixir, syrup and solution) as a dosage form, Suspension as a dosage form, Capsule as a dosage form, Tablet as a dosage form, Dissolution methods ,Formulation and processing factors, Correlation of in vivo data with in vitro dissolution data. Transport model: Permeability-Solubility-Charge State and the pH Partition Hypothesis, Properties of the Gastrointestinal Tract (GIT), pH Microclimate Intracellular Hq Environment. Tight-Junction Complex.

2 Biopharmaceutic considerations in drug product design Vitro Drug Product Performance: Introduction. biopharmaceutic factors affecting drug bioavailability, rate-limiting steps in drug absorption, physicochemical nature of the drug formulation factors affecting drug product performance, in vitro: dissolution and drug release testing, compendial methods of dissolution, alternative methods of dissolution testing, meeting dissolution requirements, problems of variable control in dissolution testingperformance of drug products. In vitro-in vivo correlation, dissolution profile comparisons, drua product stability, considerations in the design of a drug product.

12 Hrs

12

12

Hrs

12

Hrs

- 3 Pharmacokinetics: Basic considerations. pharmacokinetic models, compartment modeling; one compartment model- IV bolus, IV infusion, extra-vascular. Multi compartment model:two compartment - model in brief, non-linear pharmacokinetics: cause of non-linearity, Michaelis - Menten equation, estimation of k_{max} and v_{max}. Drug interactions: introduction, the effect of proteininteractions.the effect οf bindina tissue-binding interactions.cvtochrome p450-based drua interactions.drug interactions linked to transporters.
- 4 Drug Product Performance, In Vivo: Bioavailability and Bioequivalence: drug product performance. purpose bioavailability studies, relative and absolute availability, methods for assessing bioavailability, bioequivalence studies, design and evaluation of bioequivalence studies, study designs, crossover study designs, evaluation of the data, bioequivalence example, study submission and drug review process. biopharmaceutics classification system, methods. Permeability: In-vitro, in-situ and In-vivo methods.generic biologics (biosimilar products), clinical significance of bioequivalence studies, special concerns in bioavailability and bioequivalence studies, generic substitution.
- Application of Pharmacokinetics: Modified-Release Drug Products, Targeted Drug Delivery Systems and Biotechnological Products. Introduction to Pharmacokinetics and pharmacodynamic, drug interactions. Pharmacokinetics and pharmacodynamics of biotechnology drugs. Introduction, Proteins and peptides, Monoclonal antibodies, Oligonucleotides, Vaccines (immunotherapy), Gene therapies.

- 1. Biopharmaceutics and Clinical Pharmacokinetics by Milo Gibaldi, 4th edition, Philadelphia, Lea and Febiger, 1991
- 2. Biopharmaceutics and Pharmacokinetics, A. Treatise, D.M. Brahmankar and Sunil B. Jaiswal., VallabPrakashan, Pitampura, Delhi
- 3. Applied Biopharmaceutics and Pharmacokinetics by Shargel. Land YuABC, 2ndedition, Connecticut Appleton Century Crofts, 1985
- 4. Textbook of Biopharmaceutics and Pharmacokinetics, Dr. Shobha Rani R. Hiremath, Prism Book
- Pharmacokinetics by Milo Gibaldi and D. Perrier, 2nd edition, Marcel Dekker Inc., New York, 1982
- 6. Current Concepts in Pharmaceutical Sciences: Biopharmaceutics, Swarbrick. J., Leaand Febiger, Philadelphia, 1970
- Clinical Pharmacokinetics, Concepts and Applications 3rd edition by MalcolmRowland and Thom~ N. Tozer, Lea and Febiger, Philadelphia, 1995
- 8. Dissolution, Bioavailability and Bioequivalence, Abdou. H.M, Mack PublishingCompany, Pennsylvania 1989
- 9. Biopharmaceutics and Clinical Pharmacokinetics, An Introduction, 4th edition, revised and expande by Robert. E. Notari, Marcel Dekker Inc, New York and Basel, 1987.
- Biopharmaceutics and Relevant Pharmacokinetics by John. G Wagner and M.Pemarowski, 1st edition, Drug Intelligence Publications, Hamilton, Illinois, 1971.
- 11. Encyclopedia of Pharmaceutical Technology, Vol 13, James Swarbrick, James. G.Boylan, Marcel Dekker Inc, New York, 1996.
- 12. Basic Pharmacokinetics, 1 st edition, Sunil S Jambhekarand Philip J Breen, pharmaceutical press, RPS Publishing, 2009.
- 13. Absorption and Drug Development- Solubility, Permeability, and Charge State, Alex Avdeef, John Wiley & Sons, Inc, 2003.

COMPUTER AIDED DRUG DEVELOPMENT (MPH 203T)

Scope

This course is designed to impart knowledge and skills necessary for computer Applications in pharmaceutical research and development who want to understand the application of computers across the entire drug research and development process. Basic theoretical discussions of the principles of more integrated and coherent use of computerized information (informatics) in the drug development process are provided to help the students to clarify the concepts.

Objectives

Upon completion of this course it is expected that students will be able to understand,

- History of Computers in Pharmaceutical Research and Development
- Computational Modeling of Drug Disposition
- Computers in Preclinical Development
- Optimization Techniques in Pharmaceutical Formulation
- Computers in Market Analysis
- Computers in Clinical Development
- Artificial Intelligence (AI) and Robotics
- Computational fluid dynamics(CFD)

THEORY 60 Hrs

- 1. a. Computers in Pharmaceutical Research and 12 Development: A General Overview: History of Computers in Hrs Pharmaceutical Research and Development. Statistical modeling in Pharmaceutical research and development: Descriptive versus Statistical Mechanistic Modeling, Parameters. Estimation. Confidence Regions, Nonlinearity at the Optimum, Sensitivity Analysis, Optimal Design, Population Modeling b. Quality-by-Design In Pharmaceutical Development: Introduction, ICH Q8 guideline, Regulatory and industry views on ObD. Scientifically based ObD - examples of application.
- Computational Modeling Of Drug Disposition: Introduction 12 ,Modeling Techniques: Drug Absorption, Solubility, Intestinal Hrs Permeation, Drug Distribution ,Drug Excretion, Active Transport; P-gp, BCRP, Nucleoside Transporters, hPEPT1, ASBT, OCT, OATP, BBB-Choline Transporter.

3 Computer-aided formulation development:: Concept of 12 Hrs optimization, Optimization parameters, Factorial design, Optimization technology & Screening design. Computers in Pharmaceutical Formulation: Development of pharmaceutical emulsions, microemulsion drug carriers Legal Protection of Innovative Uses of Computers in R&D, The Ethics of Computing in Pharmaceutical Research, Computers in Market analysis

12

- 4 a. Computer-aided biopharmaceutical characterization:
 Gastrointestinal absorption simulation. Introduction, Theoretical background, Model construction, Parameter sensitivity analysis, Virtual trial, Fed vs. fasted state, In vitro dissolution and in vitro-in vivo correlation, Biowaiver considerations
 - b. Computer Simulations in Pharmacokinetics and Pharmacodynamics: Introduction, Computer Simulation: Whole Organism, Isolated Tissues, Organs, Cell, Proteins and Genes.
 - c. Computers in Clinical Development: Clinical Data Collection and Management, Regulation of Computer Systems
- 5 Artificial Intelligence (AI), Robotics and Computational fluid dynamics: General overview, Pharmaceutical Automation, Hrs Pharmaceutical applications, Advantages and Disadvantages. Current Challenges and Future Directions.

- 1. Computer Applications in Pharmaceutical Research and Development, Sean Ekins, 2006, John Wiley & Sons.
- 2. Computer-Aided Applications in Pharmaceutical Technology, 1st Edition, Jelena Djuris, Woodhead Publishing
- 3. Encyclopedia of Pharmaceutical Technology, Vol 13, James Swarbrick, James. G.Boylan, Marcel Dekker Inc, New York, 1996.

COSMETICS AND COSMECEUTICALS (MPH 204T)

Scope

This course is designed to impart knowledge and skills necessary forthefundamental need for cosmetic and cosmeceutical products.

Objectives

Upon completion of the course, the students shall be able to understand

- Key ingredients used in cosmetics and cosmeceuticals.
- Key building blocks for various formulations.
- Current technologies in the market
- Various key ingredients and basic science to develop cosmetics and cosmeceuticals
- Scientific knowledge to develop cosmetics and cosmeceuticals with desired Safety, stability, and efficacy.

THEORY 60 Hrs

- Cosmetics Regulatory: Definition of cosmetic products as per 12 Indian regulation. Indian regulatory requirements for labeling of Hrs cosmetics Regulatory provisions relating to import of cosmetics., Misbranded and spurious cosmetics. Regulatory provisions relating to manufacture of cosmetics Conditions for obtaining license, prohibition of manufacture and sale of certain cosmetics, loan license, offences and penalties.
- Cosmetics Biological aspects: Structure of skin relating to 12 problems like dry skin, acne, pigmentation, prickly heat, wrinkles and body odor. Structure of hair and hair growth cycle. Common problems associated with oral cavity. Cleansing and care needs for face, eye lids, lips, hands, feet, nail, scalp, neck, body and under-arm.
- 3 Formulation Building blocks: Building blocks for different 12 product formulations of cosmetics/cosmeceuticals. Surfactants Hrs Classification and application. Emollients, rheological additives: classification and application. Antimicrobial used as preservatives, their merits and demerits. Factors affecting microbial preservative efficacy. Building blocks for formulation of a moisturizing cream, vanishing cream, cold cream, shampoo and toothpaste. Soaps and syndetbars.

Perfumes; Classification of perfumes. Perfume ingredients listed as allergens in EU regulation.

- Controversial ingredients: Parabens, formaldehyde liberators, dioxane.
- 4 Design of cosmeceutical products: Sun protection, sunscreens 12 classification and regulatory aspects. Addressing dry skin, acne, Hrs sun-protection, pigmentation, prickly heat, wrinkles, body odor., dandruff, dental cavities, bleeding gums, mouth odor and sensitive teeth through cosmeceutical formulations.
- 5 Herbal Cosmetics: Herbal ingredients used in Hair care, skin 12 care and oral care. Review of guidelines for herbal cosmetics by Hrs private bodies like cosmos with respect to preservatives, emollients, foaming agents, emulsifiers and rheology modifiers. Challenges in formulating herbal cosmetics.

- 1. Harry's Cosmeticology. 8th edition.
- 2. Poucher'sperfumecosmeticsandSoaps,10th edition.
- Cosmetics Formulation, Manufacture and quality control, PP.Sharma,4th edition
- 4. Handbook of cosmetic science and Technology A.O.Barel, M.Paye and H.I. Maibach. 3 rd edition
- 5. Cosmetic and Toiletries recent suppliers catalogue.
- 6. CTFA directory.

PHARMACEUTICS PRACTICALS - II (MPH 205P)

- 1. To study the effect of temperature change, non solvent addition, incompatible polymer addition in microcapsules preparation
- 2. Preparation and evaluation of Alginate beads
- 3. Formulation and evaluation of gelatin /albumin microspheres
- 4. Formulation and evaluation of liposomes/niosomes
- 5. Formulation and evaluation of spherules
- 6. Improvement of dissolution characteristics of slightly soluble drug by Solid dispersion technique.
- 7. Comparison of dissolution of two different marketed products /brands
- 8. Protein binding studies of a highly protein bound drug & poorly protein bound drug
- 9. Bioavailability studies of Paracetamol in animals.
- 10. Pharmacokinetic and IVIVC data analysis by Winnoline^R software
- 11. In vitro cell studies for permeability and metabolism
- 12. DoE Using Design Expert® Software
- 13. Formulation data analysis Using Design Expert Software
- 14. Quality-by-Design in Pharmaceutical Development
- 15. Computer Simulations in Pharmacokinetics and Pharmacodynamics
- 16. Computational Modeling Of Drug Disposition
- 17. To develop Clinical Data Collection manual
- 18. To carry out Sensitivity Analysis, and Population Modeling.
- 19. Development and evaluation of Creams
- 20. Development and evaluation of Shampoo and Toothpaste base
- 21. To incorporate herbal and chemical actives to develop products
- 22. To address Dry skin, acne, blemish, Wrinkles, bleeding gums and dandruff

INDUSTRIALPHARMACY(MIP) MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MIP 101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives

After completion of course student is able to know,

- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 HOURS

UV-Visible spectroscopy: Introduction, Theory, Laws, 11
 Instrumentation associated with UV-Visible spectroscopy, Choice Hrs
 of solvents and solvent effect and Applications of UV-Visible
 spectroscopy.

IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier - Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy

Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.

Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.

2 NMR spectroscopy: Quantum numbers and their role in NMR, 11 Principle, Instrumentation, Solvent requirement in NMR, Hrs Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

- 3 Mass Spectroscopy: Principle, Theory, Instrumentation of Mass 11 Spectroscopy, Different types of ionization like electron impact, chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy
- 4 Chromatography: Principle. apparatus. instrumentation. chromatographic parameters, factors affecting resolution and Hrs applications of the following:
 - a) Paper chromatography b) Thin Laver chromatography
 - c) Ion exchange chromatography d) Column chromatography
 - Gas chromatography f) High Performance Liquid chromatography
 - g) Affinity chromatography
- 5 Electrophoresis: Principle, Instrumentation, Working conditions, factors affecting separation and applications of the following:
 - a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso electric focusing

11

Hrs

- X ray Crystallography: Production of X rays, Different X ray methods, Bragg's law, Rotating crystal technique, X ray powder technique. Types of crystals and applications of X-ray diffraction.
- 6. Immunological Assays: Radioimmunology assay (RIA), ELISA 5 Hrs (Theory & practical) and knowledge on Bioluminescence assays.

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, 6th edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.

 3. Instrumental methods of analysis – Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake. Vol II. 4th edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11, Marcel Dekker Series

PHARMACEUTICAL FORMULATION DEVELOPMENT (MIP 102T)

Scope

This course is designed to impart knowledge and skills necessary to train the students on par with the routine of Industrial activities in R&D and F&D.

Objectives

On completion of this course it is expected that students will be able to understand-

- The scheduled activities in a Pharmaceutical firm.
- The pre formulation studies of pilot batches of pharmaceutical industry.
- The significance of dissolution and product stability

THEORY 60 Hrs

- Preformulation Studies: Molecular optimization of APIs (drug 12 substances), crystal morphology and variations, powder flow, Hrs structure modification, drug-excipient compatibility studies, methods of determination.
- 2 Formulation Additives: Study of different formulation additives, 12 factors influencing their incorporation, role of formulation Hrs development and processing, new developments in excipient science. Design of experiments factorial design for product and process development.
- 3 Solubility: Importance, experimental determination, phase- 12 solubility analysis, pH-solubility profile, solubility techniques to Hrs improve solubility and utilization of analytical methods cosolvency, salt formation, complexation, solid dispersion, micellar solubilization and hydrotropy.
- 4 Dissolution: Theories, mechanisms of dissolution, in-vitro 12 dissolution testing models sink and non-sink. Factors Hrs influencing dissolution and intrinsic dissolution studies. Dissolution test apparatus - designs, dissolution testing for conventional and controlled release products. Data handling and Biorelevent media. in-vitro and in-vivo correction factor. correlations, levels of correlations.

Product Stability: Degradation kinetics, mechanisms, stability 12 testing of drugs and pharmaceuticals, factors influencing-media Hrs effects and pH effects, accelerated stability studies, interpretation of kinetic data (API & tablets). Solid state stability and shelf life assignment. Stability protocols, reports and ICH guidelines.

- 1. Lachman L, Lieberman HA, Kanig JL. The Theory and Practice Of Industrial Pharmacy, 3 ed., Varghese Publishers, Mumbai 1991.
- 2. Sinko PJ. Martin's physical pharmacy and pharmaceutical sciences, 5 ed., B.I. Publications Pvt. Ltd, Noida, 2006.
- 3. Lieberman HA, Lachman L, Schwartz JB. Pharmaceutical dosage forms: tablets Vol. I-III, 2 ed., CBS Publishers & distributors, New Delhi, 2005.
- 4. Conners KA. A Text book of pharmaceutical analysi Wells JI. Pharmaceutical preformulation: The physicochemical properties of drug substances. Ellis Horwood Ltd., England, 1998.
- 5. Yalkowsky SH. Techniques of solubilization of drugs. Vol-12. Marcel Dekker Inc., New York, 1981
- Dressman J, Kramer J. Pharmaceutical dissolution testing. Saurah printer pvt. Ltd., New Delhi, 2005.
- 7. Sethi PD. Quantitative analysis of drugs in pharmaceutical formulations, 3 ed., CBS publications, New Delhi, 2008.
- 8. Carstensen JT, Rhodes CT. Drug stability principles and practices, 3 ed., CBS Publishers & distributors. New Delhi. 2005.
- 9. Yoshioka S, Stella VJ. Stability of drugs and dosage forms, Springer (India) Pvt. Ltd., New Delhi, 2006.
- 10. Banker GS, Rhodes CT. Modern Pharmaceutics, 4 ed., Marcel Dekker Inc, New York, 2005.
- 11. W. Grimm Stability testing of drug products.
- Mazzo DJ. International stability testing. Eastern Press Pvt. Ltd., Bangalore, 1999. 13. Beckett AH, Stenlake JB. Practical pharmaceutical chemistry, Part I & II., 4 ed., CBS Publishers & distributors, New Delhi, 2004.
- 14. Indian Pharmacopoeia. Controller of Publication. Delhi, 1996.
- 15. British Pharmacopoeia. British Pharmacopoeia Commission Office, London, 2008.
- 16. United States Pharmacopoeia. United States Pharmacopeial Convention, Inc. USA. 2003.
- 17. Encyclopaedia of Pharm. Technology, Vol I III.
- 18. Wells J. I. Pharmaceutical Preformulation: The physicochemical properties of drug substances, Ellis Horwood Ltd. England, 1988.

NOVEL DRUG DELIVERY SYSTEMS (MIP 103T)

Scope

This course is designed to impart knowledge and skills necessary to train the students in the area of novel drug delivery systems.

Objective

On completion of this course it is expected that students will be able to understand.

- The need, concept, design and evaluation of various customized, sustained and controlled release dosage forms.
- To formulate and evaluate various novel drug delivery systems

THEORY 60 Hrs

Concept & Models for NDDS: Classification of rate controlled 12 drug delivery systems (DDS), rate programmed release, activation modulated & feedback regulated DDS, effect of system parameters in controlled drug delivery, computation of desired release rate and dose for controlled release DDS, pharmacokinetic design for DDS - intermittent, zero order & first order release.

Carriers for Drug Delivery: Polymers / co-polymers-introduction, classification, characterization, polymerization techniques, application in CDDS / NDDS, biodegradable & natural polymers.

- 2 Study of Various DDS: Concepts, design, formulation & 12 evaluation of controlled release oral DDS, Mucoadhesive DDS Hrs (buccal, nasal, pulmonary) Pulsatile, colon specific, liquid sustained release systems, Ocular delivery systems
- 3 Transdermal Drug Delivery Systems: Theory, design, 08 formulation & evaluation including iontophoresis and other latest Hrs developments in skin delivery systems.
- 4 Sub Micron Cosmeceuticals: Biology, formulation science and 04 evaluation of various cosmetics for skin, hair, nail, eye etc and it's regulatory aspects.

- 5 Targeted Drug Delivery Systems: Importance, concept, 12 biological process and events involved in drug targeting, design, Hrs formulation & evaluation, methods in drug targeting nanoparticles, liposomes, niosomes, pharmacosomes, resealed erythrocytes, microspheres, magnetic microspheres. Specialized pharmaceutical emulsions multiple emulsions, micro-emulsions.
- 6 Protein / Peptide Drug Delivery Systems: Concepts, delivery techniques, formulation, stability testing, causes of protein destabilization, stabilization methods.
- 7 Biotechnology in Drug Delivery Systems: Brief review of 06 major areas-recombinant DNA technology, monoclonal antibodies, Hrs gene therapy.
- 8 New trends for Personalized Medicine: Introduction, Definition, 06 Pharmacogenetics, Categories of Patients for Personalized Hrs Medicines: Customized drug delivery systems, Bioelectronic Medicines, 3D printing of pharmaceuticals, Telepharmacy.

- 1. Novel Drug Delivery System, Y.W. Chein, Vol 50, Marcel Dekker, NY,
- 2. Controlled Drug Delivery Systems, Robinson, Vol 29, Marcel Dekker, NY.
- 3. Transdermal Controlled Systemic Medications, YW Chein, Vol 31, Marcel Dekker, NY.
- 4. Bioadhesive DDS, E. Mathiowitz, Vol 98, Marcel Dekker, NY.
- 5. Nasal System Drug Delivery, K.S.E. Su, Vol 39, Marcel Dekker, NY.
- 6. Drug Delivery Devices, Vol 32, P Tyle Marcel Dekker, NY.
- 7. Polymers for Controlled Drug Delivery, P.J. Tarcha, CRC Press.
- 8. Pharmaceutical Biotechnology, Vyas, CBS, Delhi.
- Biotechnology of Industrial Antibiotics, E.J. Vandamme, Marcel Dekker, NY.
- 10. Protein Formulation & Delivery, E.J. McNally, Vol 99, Marcel Dekker, NY.
- 11. Drug Targeting, M.H. Rubinstein, John Wiley, NY.

INTELLECTUAL PROPERTY RIGHTS (MIP 104T)

Scope

This course is designed to impart knowledge and skills necessary to train the students to be on par with the routine of Industrial activities in drug regulatory affairs

Objectives

On completion of this course it is expected that students will be able to understand,

- Assist in Regulatory Audit process.
- Establish regulatory guidelines for drug and drug products
- The Regulatory requirements for contract research organization

THEORY 60 Hrs

- Definition, Need for patenting, Types of Patents, Conditions to
 be satisfied by an invention to be patentable, Introduction to
 patent search. Parts of patents. Filling of patents. The
 essential elements of patent; Guidelines for preparation of
 laboratory note book. Non-obviousness in Patent.
- 2 Role of GATT, TRIPS, and WIPO 12 Hrs
- Brief introduction to Trademark protection and WHO Patents. 12 Hrs IPR's and its types, Major bodies regulating Indian Pharmaceutical sector.
- 4 Brief introduction to CDSCO. WHO, USFDA, EMEA, TGA,
 MHRA. MCC. ANVISA
- 5 Regulatory requirements for contract research organization. 12 Hrs Regulations for Biosimilars.

- Pharmaceutical Process Validation: By Fra R. Berry and Robert A. Nash, Vol 57. 2nd Edition
- 2. Applied Production and Operation Management By Evans, Anderson and Williams
- 3. GMP for pharmaceuticals Material Management by K.K. Ahuja Published by CBS publishers
- 4. ISO 9000-Norms and explanations
- 5. GMP for pharmaceuticals- Willing S.H. Marcel and Dekker

INDUSTRIAL PHARMACY PRACTICAL - I (MIP 105P)

- Analysis of pharmacopoeial compounds and their formulations by UV Vis spectrophotometer
- 2. Simultaneous estimation of multi component containing formulations by UV spectrophotometry
- 3. Experiments based on HPLC / GC
- 4. Estimation of riboflavin/quinine sulphate by fluorimetry
- 5. Estimation of sodium/potassium by flame photometry
- 6. Effect of surfactants on the solubility of drugs.
- 7. Effect of pH on the solubility of drugs.
- 8. Stability testing of solution and solid dosage forms for photo degradation..
- 9. Stability studies of drugs in dosage forms at 25 °C, 60% RH and 40 °C, 75% RH.
- 10. Compatibility evaluation of drugs and excipients (DSC & FTIR).
- 11. Preparation and evaluation of different polymeric membranes.
- 12. Formulation and evaluation of sustained release oral matrix tablet/ oral reservoir system.
- 13. Formulation and evaluation of microspheres / microcapsules.
- 14. Formulation and evaluation of transdermal drug delivery systems.
- 15. Design and evaluation of face wash, body- wash, creams, lotions, shampoo, toothpaste, lipstick.
- 16. Electrophoresis of protein solution.
- 17. Preparation and evaluation of Liposome delivery system.

ADVANCED BIOPHARMACEUTICS & PHARMACOKINETICS (MIP 201T)

Scope

This course is designed to impart knowledge and skills necessary for dose calculations, dose adjustments and to apply Biopharmaceutics theories in practical problem solving.

Objectives

On completion of this course it is expected that students will be able to understand.

- The basic concepts in Biopharmaceutics and pharmacokinetics.
- The use of raw data and derive the pharmacokinetic models and parameters the best describe the process of drug absorption, distribution, metabolism and elimination.
- To critically evaluate Biopharmaceutics studies involving drug product equivalency.
- To design and evaluate dosage regimens of the drugs using pharmacokinetic and biopharmaceutic parameters.

THEORY 60 Hrs

- 1. Drug Absorption From The Gastrointestinal Tract: 12 Gastrointestinal tract, Mechanism of drug absorption, Factors Hrs affecting, pH-partition theory, Formulation and physicochemical factors: Dissolution rate, Dissolution process, Noves-Whitney equation and drug dissolution. Factors affecting the dissolution rate. Gastrointestinal absorption: role of the dosage form: Solution (elixir, syrup and solution) as a dosage form .Suspension as a dosage form. Capsule as a dosage form. Tablet as a dosage form .Dissolution methods ,Formulation and processing factors, Correlation of in vivo data with in vitro dissolution data. Transport model: Permeability-Solubility-Charge State and the pH Partition Hypothesis, Properties of the Gastrointestinal Tract (GIT), pH Microclimate Intracellular Нq Environment, Tight-Iunction Complex. Solubility: Experimental methods. Permeability: In-vitro, in-situ and In-vivo methods.
- 2 Biopharmaceutic Considerations in Drug Product Design 12 and In Vitro Drug Product Performance: Introduction, Hrs Biopharmaceutic Factors Affecting Drug Bioavailability, Rate-Limiting Steps in Drug Absorption, Physicochemical Nature of the

Drug Formulation Factors Affecting Drug Product Performance, In Vitro: Dissolution and Drug Release Testing, Compendial Methods of Dissolution, Alternative Methods of Dissolution Testing, Meeting Dissolution Requirements, Problems of Variable Control in Dissolution Testing Performance of Drug Products: In Vitro-In Vivo Correlation, Dissolution Profile Comparisons, Drug Product Stability, Considerations in the Design of a Drug Product.

- 3 Pharmacokinetics: Basic considerations, Pharmacokinetic 12 models, Compartment modeling: One compartment model- IV Hrs bolus, IV infusion, Extra-vascular; Multi Compartment model: Two compartment model in brief, Non-Linear Pharmacokinetics: Cause of non-linearity, Michaelis Menten equation, Estimation Kmax and Vmax. Drug interactions: Introduction, The effect of protein-binding interactions, The effect of tissue-binding interactions, Cytochrome P450-based drug interactions, Drug interactions linked to transporters.
- 4 Product Performance, In Vivo: Bioavailability and Drug Product Performance, Purpose of Hrs Bioequivalence: Drug Bioavailability Studies, Relative and Absolute Availability, , Methods for Assessing Bioavailability, Bioequivalence Studies, Design and Evaluation of Bioequivalence Studies, Study Designs, Crossover Study Designs, Evaluation of the Data, Bioequivalence Example, Study Submission and Drug Review Process, The Biopharmaceutics Classification System, Generic (Biosimilar Drug Products), Clinical Significance of Bioequivalence Studies, Special Concerns in Bioavailability and Bioequivalence Studies, Generic Substitution.
- 5 Application of Pharmacokinetics: Modified-Release Products, Targeted Drug Delivery Systems and Biotechnological Hrs Products. Relationship between Pharmacokinetics including Pharmacodynamics: Generation of pharmacokineticpharmacodynamic (PKPD) equation. Pharmacokinetic pharmacodynamic, interactions. Pharmacokinetics and pharmacodynamics of biotechnology drugs: Introduction, Proteins and peptides, Monoclonal antibodies, Oligonucleotides, Vaccines (immunotherapy), Gene therapies.

- 1. Biopharmaceutics and Clinical Pharmacokinetics by Milo Gibaldi, 4th edition, Philadelphia, Lea and Febiger, 1991
- 2. Biopharmaceutics and Pharmacokinetics, A. Treatise, D.M. Brahmankar and Sunil B.J aiswal., Vallab Prakashan, Pitampura, Delhi
- 3. Applied Biopharmaceutics and Pharmacokinetics by Shargel. Land YuABC, 2nd edition, Connecticut Appleton Century Crofts, 1985
- 4. Textbook of Biopharmaceutics and Pharmacokinetics, Dr. Shobha Rani R. Hiremath, Prism Book
- Pharmacokinetics by Milo Gibaldi and D. Perrier, 2nd edition, Marcel Dekker Inc., New York, 1982
- 6. Current Concepts in Pharmaceutical Sciences: Biopharmaceutics, Swarbrick. J., Lea and Febiger, Philadelphia, 1970
- Clinical Pharmacokinetics, Concepts and Applications 3rd edition by Malcolm Rowland and Thom~ N. Tozer, Lea and Febiger, Philadelphia, 1995
- 8. Dissolution, Bioavailability and Bioequivalence, Abdou. H.M, Mack Publishing Company, Pennsylvania 1989
- Biopharmaceutics and Clinical Pharmacokinetics, An Introduction, 4th edition, revised and expande by Robert. E. Notari, Marcel Dekker Inc, New York and Basel. 1987.
- Biopharmaceutics and Relevant Pharmacokinetics by John. G Wagner and M.Pemarowski, 1st edition, Drug Intelligence Publications, Hamilton, Illinois, 1971.
- 11. Encyclopedia of Pharmaceutical Technology, Vol 13, James Swarbrick, James. G.Boylan, Marcel Dekker Inc, New York, 1996.
- 12. Basic Pharmacokinetics, 1 st edition, Sunil S Jambhekar and Philip J Breen, pharmaceutical press, RPS Publishing, 2009.
- 13. Absorption and Drug Development- Solubility, Permeability, and Charge State, Alex Avdeef, John Wiley & Sons, Inc, 2003.

SCALE UP AND TECHNOLOGY TRANSFER (MIP 202T)

Scope

This course is designed to impart knowledge and skills necessary to train the students to be on scale up, technology transfer process and industrial safety issues.

Objectives:

On completion of this course it is expected that students will be able to understand,

- Manage the scale up process in pharmaceutical industry.
- Assist in technology transfer.
- To establish safety guidelines, which prevent industrial hazards.

THEORY 60 Hrs

1. Pilot plant design: Basic requirements for design, facility, 12 equipment selection, for tablets, capsules, liquid orals, parentral Hrs and semisolid preparations.

Scale up: Importance, Technology transfer from R & D to pilot plant to plant scale, process scale up for tablets, capsules, liquid orals, semisolids, parentral, NDDS products – stress on formula, equipments, product uniformity, stability, raw materials, physical layout, input, in-process and finished product specifications, problems encountered during transfer of technology

- Validation: General concepts, types, procedures & protocols, 12 documentation, VMF. Analytical method validation, cleaning Hrs validation and vender qualification.
- 3 Equipment Qualification: Importance, IQ, OQ, PQ for 12 equipments autoclave, DHS, membrane filter, rapid mixer Hrs granulator, cone blender, FBD, tablet compression machine, liquid filling and sealing machine. Aseptic room validation.
- 4 Process validation: Importance, validation of mixing, 12 granulation, drying, compression, tablet coating, liquid filling and Hrs sealing, sterilization, water process systems, environmental control.

5 Industrial safety: Hazards - fire, mechanical, electrical, 12 chemical and pharmaceutical, Monitoring & prevention systems, Hrs industrial effluent testing & treatment. Control of environmental pollution.

- Pharmaceutical process validation, JR Berry, Nash, Vol 57, Marcel Dekker, NY.
- 2. Pharmaceutical Production facilities, design and applications, by GC Cole, Taylor and Francis.
- Pharmaceutical project management, T.Kennedy, Vol 86, Marcel Dekker, NY.
- 4. The theory & Practice of Industrial Pharmacy, L.Lachman, H.A.Lieberman, Varghese Publ. Bombay.
- 5. Tablet machine instruments in pharmaceuticals, PR Watt, John Wiloy.
- 6. Pharmaceutical dosage forms, Tablets, Vol 1, 2, 3 by Lachman, Lieberman, Marcel Dekker, NY.
- 7. Pharmaceutical dosage forms, Parentral medications, Vol 1, 2 by K.E. Avis, Marcel Dekker, NY.
- 8. Dispersed system Vol 1, 2, 3 by Lachman, Lieberman, Marcel Dekker, NY.
- 9. Subrahmanyam, CVS, Pharmaceutical production and Management, 2007, Vallabh Prakashan.Dehli.

PHARMACEUTICAL PRODUCTION TECHNOLOGY (MIP 203T)

Scope

This course is designed to impart knowledge and skills necessary to train the students to be on par with the routine of Industrial activities in Production

Objectives

On completion of this course it is expected that students will be able to understand,

Handle the scheduled activities in a Pharmaceutical firm.

Manage the production of large batches of pharmaceutical formulations.

THEORY 60 Hrs

Improved Tablet Production: Tablet production process, unit 12

1. operation improvements, granulation and pelletization Hrs equipments, continuous and batch mixing, rapid mixing granulators, rota granulators, spheronizers and marumerisers, and other specialized granulation and drying equipments. Problems encountered.

Coating Technology: Process, equipments, particle coating, fluidized bed coating, application techniques. Problems encountered.

- Parenteral Production: Area planning & environmental control, 12 wall and floor treatment, fixtures and machineries, change rooms, Hrs personnel flow, utilities & utilities equipment location, engineering and maintenance.
- 3 Lyophilization & Spray drying Technology: Principles, 12 process, freeze-drying and spray drying equipments.
- 4 Capsule Production: Production process, improved capsule 12 manufacturing and filling machines for hard and soft gelatin Hrs capsules. Layout and problems encountered.

 Disperse Systems Production: Production processes.

Disperse Systems Production: Production processes, applications of mixers, mills, disperse equipments including fine solids dispersion, problems encountered.

- Packaging Technology: Types of packaging materials, machinery, labeling, package printing for different dosage forms.
- 5 Air Handling Systems: Study of AHUs, humidity & temperature 12 control, air filtration systems, dust collectors. Water Treatment Hrs Process: Techniques and maintenance RO, DM, ultra filtration, WFI.

- 1. The Theory & Practice of Industrial Pharmacy, L. Lachman, Varghese Publ, Bombay.
- 2. Modern Pharmaceutics by Banker, Vol 72, Marcel Dekker, NY.
- 3. Pharmaceutical Dosage Forms, Vol 1, 2, 3 by Lachman, Lieberman, Marcel Dekker, NY.
- 4. Pharmaceutical Dosage Forms, Parentral medications, Vol 1, 2 by K.E. Avis, Marcel Dekker, NY.
- 5. Pharmaceutical Production Facilities, design and applications, by G.C. Cole, Taylor and Francis.
- 6. Dispersed System Vol 1, 2, 3 by Lachman, Lieberman, Marcel Dekker, NY.
- 7. Product design and testing of polymeric materials by N.P. Chezerisionoff.
- 8. Pharmaceutical Project Management, T.Kennedy, Vol 86, Marcel Dekker, NY.
- 9. Packaging Pharmaceutical and Health Care, H.Lockhard.
- 10. Quality Control of Packaging Materials in Pharmaceutical Industy, .Kharburn, Marcel Dekker, NY.
- 11. Freeze drying / Lyophilization of Pharmaceuticals & Biological Products, L. Ray, Vol 96, Marcel Dekker, NY.
- 12. Tablet Machine Instrumentation In Pharmaceuticals, PR Watt, Ellis Horwoods, UK.

ENTREPRENEURSHIP MANAGEMENT (MIP 204T)

Scope

This course is designed to impart knowledge and skills necessary to train the students on entrepreneurship management.

Objectives:

On completion of this course it is expected that students will be able to understand,

- The Role of enterprise in national and global economy
- Dynamics of motivation and concepts of entrepreneurship
- Demands and challenges of Growth Strategies And Networking

THEORY 60 Hrs

- 1. Conceptual Frame Work: Concept need and process in 12 entrepreneurship development. Role of enterprise in national and Hrs global economy. Types of enterprise Merits and Demerits. Government policies and schemes for enterprise development. Institutional support in enterprise development and management.
- 2 Entrepreneur: Entrepreneurial motivation dynamics of 12 motivation. Entrepreneurial competency -Concepts. Developing Hrs Entrepreneurial competencies requirements and understanding the process of entrepreneurship development, self-awareness, interpersonal skills, creativity, assertiveness, achievement, factors affecting entrepreneur role.
- 3 Launching And Organising An Enterprise: Environment 12 scanning Information, sources, schemes of assistance, Hrs problems. Enterprise selection, market assessment, enterprise feasibility study, SWOT Analysis. Resource mobilisation finance, technology, raw material, site and manpower. Costing and marketing management and quality control. Feedback, monitoring and evaluation.
- 4 Growth Strategies And Networking: Performance appraisal and 12 assessment. Profitability and control measures, demands and the challenges. Need for diversification. Future Growth Techniques of expansion and diversification, vision strategies. Concept and dynamics. Methods, Joint venture, co-ordination and feasibility study.

5 Preparing Project Proposal To Start On New Enterprise 12 Project work - Feasibility report; Planning, resource mobilisation Hrs and implementation.

- 1. Akhauri, M.M.P.(1990): Entrepreneurship for Women in India, NIESBUD, New Delhi.
- 2. Hisrich, R.D & Brush, C.G.(1996) The Women Entrepreneurs, D.C. Health & Co., Toranto.
- 3. Hisrich, R.D. and Peters, M.P. (1995): Entrepreneurship Starting, Developing and Managing a New Enterprise, Richard D., Inwin, INC, USA.
- 4. Meredith, G.G. et al (1982): Practice of Entrepreneurship, ILO, Geneva.
- 5. Patel, V.C. (1987): Women Entrepreneurship Developing New Entrepreneurs, Ahmedabad EDII.

INDUSTRIAL PHARMACY PRACTICAL - II (MIP 205P)

- 1. Improvement of dissolution characteristics of slightly soluble drug by Solid dispersion technique.
- 2. Comparison of dissolution of two different marketed products /brands
- 3. Protein binding studies of a highly protein bound drug & poorly protein bound drug
- 4. Bioavailability studies of Paracetamol (Animal).
- 5. Pharmacokinetic and IVIVC data analysis by WinnolineR software
- 6. In vitro cell studies for permeability and metabolism
- 7. Formulation and evaluation of tablets
- 8. Formulation and evaluation of capsules
- 9. Formulation and evaluation of injections
- 10. Formulation and evaluation of emulsion
- 11. Formulation and evaluation of suspension.
- 12. Formulation and evaluation of enteric coating tablets.
- 13. Preparation and evaluation of a freeze dried formulation.
- 14. Preparation and evaluation of a spray dried formulation.

PHARMACEUTICALCHEMISTRY(MPC)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MPC 101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives

After completion of course student is able to know about chemicals and excipients

- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 Hrs

- 1. a. UV-Visible spectroscopy: Introduction, Theory, Laws, 10 Instrumentation associated with UV-Visible spectroscopy, Choice Hrs of solvents and solvent effect and Applications of UV-Visible spectroscopy, Difference/ Derivative spectroscopy.
 - b. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy, Data Interpretation.
 - c. Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence (Characterestics of drugs that can be analysed by flourimetry), Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
 - d. Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.
- 2 NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

10 Hrs

- 3 Mass Spectroscopy: Principle, Theory, Instrumentation of Mass 10 Spectroscopy, Different types of ionization like electron impact, Hrs chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy.
- 4 Chromatography: Principle, apparatus, instrumentation, 10 chromatographic parameters, factors affecting resolution, isolation Hrs of drug from excipients, data interpretation and applications of the following:
 - a) Thin Layer chromatography
 - b) High Performance Thin Layer Chromatography
 - c) Ion exchange chromatography
 - d) Column chromatography
 - e) Gas chromatography
 - f) High Performance Liquid chromatography
 - g) Ultra High Performance Liquid chromatography
 - h) Affinity chromatography
 - i) Gel Chromatography
- 5 a.Electrophoresis: Principle, Instrumentation, Working 10 conditions, factors affecting separation and applications of the Hrs following:
 - a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso electric focusing
 - b.X ray Crystallography: Production of X rays, Different X ray methods, Bragg's law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.
- a. Potentiometry: Principle, working, Ion selective Electrodes 10
 and Application of potentiometry.
 - b. Thermal Techniques: Principle, thermal transitions and Instrumentation (Heat flux and power-compensation and designs), Modulated DSC, Hyper DSC, experimental parameters (sample preparation, experimental conditions, calibration, heating and cooling rates, resolution, source of errors) and their influence, advantage and disadvantages, pharmaceutical applications. Differential Thermal Analysis (DTA): Principle, instrumentation

and advantage and disadvantages, pharmaceutical applications, derivative differential thermal analysis (DDTA). TGA: Principle, instrumentation, factors affecting results, advantage and disadvantages, pharmaceutical applications.

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis Modern Methods Part B J W Munson, Vol 11, Marcel. Dekker Series
- 8. Spectroscopy of Organic Compounds, 2nd edn., P.S/Kalsi, Wiley estern Ltd., Delhi.
- 9. Textbook of Pharmaceutical Analysis, KA.Connors, 3rd Edition, John Wiley & Sons, 1982.

ADVANCED ORGANIC CHEMISTRY - I (MPC 102T)

Scope

The subject is designed to provide in-depth knowledge about advances in organic chemistry, different techniques of organic synthesis and their applications to process chemistry as well as drug discovery.

Objectives

Upon completion of course, the student shall be to understand

- The principles and applications of reterosynthesis
- The mechanism & applications of various named reactions
- The concept of disconnection to develop synthetic routes for small target molecule.
- The various catalysts used in organic reactions
- The chemistry of heterocyclic compounds

THEORY 60 Hrs

- 1. Basic Aspects of Organic Chemistry:
- 12 Organic intermediates: Carbocations, carbanions, free Hrs radicals, carbenes and nitrenes. Their method of formation, stability and synthetic applications.
 - 2. Types of reaction mechanisms and methods of determining them,
 - regarding Detailed knowledge the reactions. mechanisms and their relative reactivity and orientations.

Addition reactions

- Nucleophilic uni- and bimolecular reactions (SN1 and a) SN2)
- b) Elimination reactions (E1 & E2; Hoffman & Saytzeff's rule)

12

Hrs

- Rearrangement reaction
- 2 Study of mechanism and synthetic applications of following named Reactions:

Ugi reaction, Brook rearrangement, Ullmann coupling reactions, Dieckmann Reaction, Doebner-Miller Reaction, Sandmever Reaction, Mitsunobu reaction, Mannich reaction, Vilsmeyer-Haack Reaction, Sharpless asymmetric epoxidation, Baeyer-Villiger oxidation, Shapiro & Suzuki reaction, Ozonolysis and Michael addition reaction

3 Synthetic Reagents & Applications:
Aluminiumisopropoxide, N-bromosuccinamide, diazomethane, dicyclohexylcarbodimide, Wilkinson reagent, Witting reagent.
Osmium tetroxide, titanium chloride, diazopropane, diethyl azodicarboxylate, Triphenylphosphine, Benzotriazol-1-yloxy) tris (dimethylamino) phosphonium hexafluoro-phosphate (BOP).

12 Hrs

Protecting groups

- a. Role of protection in organic synthesis
- b. Protection for the hydroxyl group, including 1,2-and1,3-diols: ethers, esters, carbonates, cyclic acetals & ketals
- c. Protection for the Carbonyl Group: Acetals and Ketals
- d. Protection for the Carboxyl Group: amides and hydrazides, esters
- e. Protection for the Amino Group and Amino acids: carbamates and amides
- 4 Heterocyclic Chemistry:

12 Hrs

Organic Name reactions with their respective mechanism and application involved in synthesis of drugs containing five, six membered and fused hetrocyclics such as Debus-Radziszewski imidazole synthesis, Knorr Pyrazole Synthesis Pinner Pyrimidine Synthesis, Combes Quinoline Synthesis, Bernthsen Acridine Synthesis, Smiles rearrangement and Traube purine synthesis.

Synthesis of few representative drugs containing these hetrocyclic nucleus such as Ketoconazole. Metronidazole. Miconazole, celecoxib, antipyrin, Metamizole sodium. Terconazole. Alprazolam. Triamterene. Sulfamerazine. Hydroxychloroguine, Ouinine, Trimethoprim, Chloroguine, Prochlorpherazine. Ouinacrine. Amsacrine. Promazine. Chlorpromazine, Theophylline, Mercaptopurine and Thioguanine.

5 Synthon approach and retrosynthesis applications

12 Hrs

- i. Basic principles, terminologies and advantages of retrosynthesis; guidelines for dissection of molecules. Functional group interconvertion and addition (FGI and FGA)
- ii. C-X disconnections; C-C disconnections alcohols and carbonyl compounds; 1,2-, 1,3-,1,4-, 1,5-, 1,6-difunctionalized compounds
- iii. Strategies for synthesis of three, four, five and six-membered ring.

- 1. "Advanced Organic chemistry, Reaction, Mechanisms and Structure", J. March, John Wiley and Sons, New York.
- 2. "Mechanism and Structure in Organic Chemistry", ES Gould, Hold Rinchart and Winston, New York.
- 3. "Organic Chemistry" Clayden, Greeves, Warren and Woihers., Oxford University Press 2001.
- 4. "Organic Chemistry" Vol I and II. I.L. Finar. ELBS, Pearson Education Lts, Dorling Kindersley 9India) Pvt. Ltd.,.
- 5. A guide to mechanisms in Organic Chemistry, Peter Skyes (Orient Longman, New Delhi).
- 6. Reactive Intermediates in Organic Chemistry, Tandom and Gowel, Oxford & IBH Publishers.
- 7. Combinational Chemistry Synthesis and applications Stephen R Wilson & Anthony W Czarnik, Wiley Blackwell.
- 8. Carey, Organic Chemistry, 5th Edition (Viva Books Pvt. Ltd.)
- 9. Organic Synthesis The Disconnection Approach, S. Warren, Wily India
- 10. Principles of Organic Synthesis, ROC Norman and JM Coxan, Nelson Thorns.
- 11. Organic Synthesis Special Techniques. VK Ahluwalia and R Agarwal, Narosa Publishers.
- 12. Organic Reaction Mechanisms IVth Edtn, VK Ahluwalia and RK Parashar, Narosa Publishers.

ADVANCED MEDICINAL CHEMISTRY (MPC 103T)

Scope

The subject is designed to impart knowledge about recent advances in the field of medicinal chemistry at the molecular level including different techniques for the rational drug design.

Objectives

At completion of this course it is expected that students will be able to understand

- Different stages of drug discovery
- Role of medicinal chemistry in drug research
- Different techniques for drug discovery
- Various strategies to design and develop new drug like molecules for biological targets
- Peptidomimetics

THEORY 60 Hrs

Drug discovery: Stages of drug discovery, lead discovery; 12 identification, validation and diversity of drug targets.

Biological drug targets: Receptors, types, binding and activation, theories of drug receptor interaction, drug receptor interactions, agonists vs antagonists, artificial enzymes.

2 Prodrug Design and Analog design:

12 Hrs

- a) Prodrug design: Basic concept, Carrier linked prodrugs/ Bioprecursors, Prodrugs of functional group, Prodrugs to improve patient acceptability, Drug solubility, Drug absorption and distribution, site specific drug delivery and sustained drug action. Rationale of prodrug design and practical consideration of prodrug design.
- b) Combating drug resistance: Causes for drug resistance, strategies to combat drug resistance in antibiotics and anticancer therapy, Genetic principles of drug resistance.
- c) Analog Design: Introduction, Classical & Non classical, Bioisosteric replacement strategies, rigid analogs,

alteration of chain branching, changes in ring size, ring position isomers, design of stereo isomers and geometric isomers, fragments of a lead molecule, variation in inter atomic distance.

a) Medicinal chemistry aspects of the following class of drugs

12 Hrs

Systematic study, SAR, Mechanism of action and synthesis of new generation molecules of following class of drugs:

- a) Anti-hypertensive drugs, Psychoactive drugs, Anticonvulsant drugs, H1 & H2 receptor antagonist, COX1 & COX2 inhibitors, Adrenergic & Cholinergic agents, Antineoplastic and Antiviral agents.
- b) Stereochemistry and Drug action: Realization that stereo selectivity is a pre-requisite for evolution. Role of chirality in selective and specific therapeutic agents. Case studies, Enantio selectivity in drug adsorption, metabolism, distribution and elimination.
- 4 Rational Design of Enzyme Inhibitors 12
 Enzyme kinetics & Principles of Enzyme inhibitors, Enzyme Hrs
 inhibitors in medicine, Enzyme inhibitors in basic research,
 rational design of non-covalently and covalently binding enzyme
 inhibitors.
- Peptidomimetics 12
 Therapeutic values of Peptidomimetics, design of Hrs peptidomimetics by manipulation of the amino acids, modification of the peptide backbone, incorporating conformational constraints locally or globally. Chemistry of prostaglandins, leukotrienes and thromboxones.

- 1. Medicinal Chemistry by Burger, Vol I –VI.
- Wilson and Gisvold's Text book of Organic Medicinal and Pharmaceutical Chemistry, 12th Edition, Lppincott Williams & Wilkins, Woltess Kluwer (India) Pvt.Ltd, New Delhi.
- 3. Comprehensive Medicinal Chemistry Corwin and Hansch.
- 4. Computational and structural approaches to drug design edited by Robert M Stroud and Janet. F Moore

- 5. Introduction to Quantitative Drug Design by Y.C. Martin.
- 6. Principles of Medicinal Chemistry by William Foye, 7th Edition, Ippincott Williams & Wilkins, Woltess Kluwer (India) Pvt.Ltd, New Delhi.
- 7. Drug Design Volumes by Arienes, Academic Press, Elsevier Publishers, Noida, Uttar Pradesh..
- 8. Principles of Drug Design by Smith.
- 9. The Organic Chemistry of the Drug Design and Drug action by Richard B.Silverman, II Edition, Elsevier Publishers, New Delhi.
- 10. An Introduction to Medicinal Chemistry, Graham L.Patrick, III Edition, Oxford University Press, USA.
- 11. Biopharmaceutics and pharmacokinetics, DM.Brahmankar, Sunil B. Jaiswal II Edition, 2014, Vallabh Prakashan, New Delhi.
- 12. Peptidomimetics in Organic and Medicinal Chemistry by Antonio Guarna and Andrea Trabocchi, First edition, Wiley publishers.

CHEMISTRY OF NATURAL PRODUCTS (MPC 104T)

Scope

The subject is designed to provide detail knowledge about chemistry of medicinal compounds from natural origin and general methods of structural elucidation of such compounds. It also emphasizes on isolation, purification and characterization of medicinal compounds from natural origin.

Objectives

At completion of this course it is expected that students will be able to understand-

- Different types of natural compounds and their chemistry and medicinal importance
- The importance of natural compounds as lead molecules for new drug discovery
- The concept of rDNA technology tool for new drug discovery
- General methods of structural elucidation of compounds of natural origin
- Isolation, purification and characterization of simple chemical constituents from natural source

THEORY 60 Hrs

- Study of Natural products as leads for new pharmaceuticals
 for the following class of drugs
 Hrs
 - a) Drugs Affecting the Central Nervous System: Morphine Alkaloids
 - b) Anticancer Drugs: Paclitaxel and Docetaxel, Etoposide, and Teniposide
 - c) Cardiovascular Drugs: Lovastatin, Teprotide and Dicoumarol
 - d) Neuromuscular Blocking Drugs: Curare alkaloids
 - e) Anti-malarial drugs and Analogues

emetine and reserpine.

- f) Chemistry of macrolid antibiotics (Erythromycin, Azithromycin, Roxithromycin, and Clarithromycin) and β Lactam antibiotics (Cephalosporins and Carbapenem)
- 2 a) Alkaloids 12
 General introduction, classification, isolation, purification, Hrs
 molecular modification and biological activity of alkaloids, general
 methods of structural determination of alkaloids, structural
 elucidation and stereochemistry of ephedrine, morphine, ergot,

b) Flavonoids

Introduction, isolation and purification of flavonoids, methods of structural determination of flavonoids; Structural elucidation of quercetin.

c) Steroids

General introduction, chemistry of sterols, sapogenin and cardiac glycosides. Stereochemistry and nomenclature of steroids, chemistry of contraceptive agents male & female sex hormones (Testosterone, Estradiol. Progesterone), adrenocorticoids (Cortisone), contraceptive agents and steroids (Vit - D).

3 a) Terpenoids

12 Hrs

12

Hrs

12

Classification, isolation, isoprene rule and general methods of structural elucidation of Terpenoids; Structural elucidation of drugs belonging to mono (citral, menthol, camphor), di(retinol, Phytol, taxol) and tri terpenoids (Squalene, Ginsenoside) carotinoids (B carotene).

b) Vitamins

Chemistry and Physiological significance of Vitamin A, B1, B2, B12. C. E. Folic acid and Niacin.

- 4 a). Recombinant DNA technology and drug discovery rDNA technology, hybridoma technology, New pharmaceuticals derived from biotechnology; Oligonucleotide therapy. Gene therapy: Introduction, Clinical application and recent advances in gene therapy, principles of RNA & DNA estimation
 - b). Active constituent of certain crude drugs used in Indigenous system Diabetic therapy - Gymnema sylvestre, Salacia reticulate, Pterocarpus marsupiam, Swertia chirata, Trigonella foenum graccum: Liver dysfunction - Phyllanthus niruri: Antitumor - Curcuma longa Linn.
- 5 Structural Characterization of natural compounds Structural characterization of natural compounds using IR, Hrs 1HNMR, 13CNMR and MS Spectroscopy of specific drugs e.g., Penicillin, Morphine, Camphor, Vit-D, Quercetin and Digitalis alycosides.

- 1. Modern Methods of Plant Analysis, Peech and M.V.Tracey, Springer Verlag, Berlin, Heidelberg.
- 2. Phytochemistry Vol. I and II by Miller, Jan Nostrant Rein Hld.
- 3. Recent advances in Phytochemistry Vol. I to IV Scikel Runeckles, Springer Science & Business Media.
- 4. Chemistry of natural products Vol I onwards IWPAC.
- 5. Natural Product Chemistry Nakanishi Gggolo, University Science Books, California.
- 6. Natural Product Chemistry "A laboratory guide" Rapheal Khan.
- 7. The Alkaloid Chemistry and Physiology by RHF Manske, Academic Press.
- 8. Introduction to molecular Phytochemistry CHJ Wells, Chapmannstall.
- 9. Organic Chemistry of Natural Products Vol I and II by Gurdeep and Chatwall, Himalaya Publishing House.
- Organic Chemistry of Natural Products Vol I and II by O.P. Agarwal, Krishan Prakashan.
- 11. Organic Chemistry Vol I and II by I.L. Finar, Pearson education.
- 12. Elements of Biotechnology by P.K. Gupta, Rastogi Publishers.
- 13. Pharmaceutical Biotechnology by S.P.Vyas and V.K.Dixit, CBS Publishers.
- 14. Biotechnology by Purohit and Mathur, Agro-Bios, 13th edition.
- 15. Phytochemical methods of Harborne, Springer, Netherlands.
- 16. Burger's Medicinal Chemistry.

PHARMACEUTICAL CHEMISTRY PRACTICAL - I (MPC 105P)

- Analysis of Pharmacopoeial compounds and their formulations by UV Vis spectrophotometer, RNA & DNA estimation
- Simultaneous estimation of multi component containing formulations by UV spectrophotometry
- 3. Experiments based on Column chromatography
- 4. Experiments based on HPLC
- 5. Experiments based on Gas Chromatography
- 6. Estimation of riboflavin/quinine sulphate by fluorimetry
- 7. Estimation of sodium/potassium by flame photometry

To perform the following reactions of synthetic importance

- 1. Purification of organic solvents, column chromatography
- Claisen-schimidt reaction.
- 3. Benzyllic acid rearrangement.
- 4. Beckmann rearrangement.
- 5. Hoffmann rearrangement
- 6. Mannich reaction
- 7. Synthesis of medicinally important compounds involving more than one step along with purification and Characterization using TLC, melting point and IR spectroscopy (4 experiments)
- 8. Estimation of elements and functional groups in organic natural compounds
- Isolation, characterization like melting point, mixed melting point, molecular weight determination, functional group analysis, co-chromatographic technique for identification of isolated compounds and interpretation of UV and IR data.
- 10. Some typical degradation reactions to be carried on selected plant constituents

ADVANCED SPECTRAL ANALYSIS (MPC 201T)

Scope

This subject deals with various hyphenated analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are LC-MS, GC-MS, ATR-IR, DSC etc.

Objectives

At completion of this course it is expected that students will be able to understand-

- Interpretation of the NMR, Mass and IR spectra of various organic compounds
- Theoretical and practical skills of the hyphenated instruments
- Identification of organic compounds

THEORY		60Hrs
1.	UV and IR spectroscopy: Wood ward – Fieser rule for 1,3- butadienes, cyclic dienes and α , β -carbonyl compounds and interpretation compounds of enones. ATR-IR, IR Interpretation of organic compounds.	12 Hrs
2	NMR spectroscopy: 1-D and 2-D NMR, NOESY and COSY, HECTOR, INADEQUATE techniques, Interpretation of organic compounds.	12 Hrs
3	Mass Spectroscopy	12 Hrs
	Mass fragmentation and its rules, Fragmentation of important functional groups like alcohols, amines, carbonyl groups and alkanes, Meta stable ions, Mc Lafferty rearrangement, Ring rule Isotopic peaks, Interpretation of organic compounds.	t I
4	Chromatography:	12

Principle, Instrumentation and Applications of the following:

Exclusion Chromatography) k) Flash chromatography

a) GC-MS b) GC-AAS c) LC-MS d) LC-FTIR e) LC-NMR f) CE-MS g) High Performance Thin Layer chromatography h) Super critical fluid chromatography i) I-DC (Ion-

Hrs

- 5 a). Thermal methods of analysis 12 Introduction, principle, instrumentation and application of DSC, Hrs DTA and TGA.
 - b). Raman Spectroscopy Introduction, Principle, Instrumentation and Applications.
 - c). Radio immuno assay Biological standardization, bioassay, ELISA, Radioimmuno assay of digitalis and insulin.

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.

 3. Instrumental methods of analysis – Willards, 7th edition, CBS publishers.
- 4. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 5. Quantitative analysis of Pharmaceutical formulations by HPTLC P D Sethi, CBS Publishers, New Delhi,
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11, Marcel Dekker Series

ADVANCED ORGANIC CHEMISTRY - II (MPC 202T)

Scope

The subject is designed to provide in-depth knowledge about advances in organic chemistry, different techniques of organic synthesis and their applications to process chemistry as well as drug discovery.

Objectives

Upon completion of course, the student shall able to understand

- The principles and applications of Green chemistry
- The concept of peptide chemistry.
- The various catalysts used in organic reactions
- The concept of stereochemistry and asymmetric synthesis.

THEORY 60 Hrs

1. Green Chemistry:

12

a. Introduction, principles of green chemistry

Hrs

- Microwave assisted reactions: Merit and demerits of its use, increased reaction rates, mechanism, superheating effects of microwave, effects of solvents in microwave assisted synthesis, microwave technology in process optimization, its applications in various organic reactions and heterocycles synthesis
- c. Ultrasound assisted reactions: Types of sonochemical reactions, homogenous, heterogeneous liquid-liquid and liquid-solid reactions, synthetic applications
- d. Continuous flow reactors: Working principle, advantages and synthetic applications.
- 2 Chemistry of peptides

12 Hrs

- a. Coupling reactions in peptide synthesis
- b. Principles of solid phase peptide synthesis, t-BOC and FMOC protocols, various solid supports and linkers: Activation procedures, peptide bond formation, deprotection and cleavage from resin, low and high HF cleavage protocols, formation of free peptides and peptide amides, purification and case studies, site-specific chemical modifications of peptides
- c. Segment and sequential strategies for solution phase peptide synthesis with any two case studies
- d. Side reactions in peptide synthesis: Deletion peptides, side

reactions initiated by proton abstraction, protonation, overactivation and side reactions of individual amino acids.

3 Photochemical Reactions

12 Hrs

Basic principles of photochemical reactions. Photo-oxidation, photo-addition and photo-fragmentation.

Pericyclic reactions

Mechanism, Types of pericyclic reactions such as cyclo addition, electrocyclic reaction and sigmatrophic rearrangement reactions with examples

4 Catalysis:

12

- a. Types of catalysis, heterogeneous and homogenous catalysis, Hrs advantages and disadvantages
- Heterogeneous catalysis preparation, characterization, kinetics, supported catalysts, catalyst deactivation and regeneration, some examples of heterogeneous catalysis used in synthesis of drugs.
- Homogenous catalysis, hydrogenation, hydroformylation, hydrocyanation, Wilkinson catalysts, chiral ligands and chiral induction, Ziegler-Natta catalysts, some examples of homogenous catalysis used in synthesis of drugs
- d. Transition-metal and Organo-catalysis in organic synthesis: Metal-catalyzed reactions
- e. Biocatalysis: Use of enzymes in organic synthesis, immobilized enzymes/cells in organic reaction.
- f. Phase transfer catalysis theory and applications

5 Stereochemistry & Asymmetric Synthesis

12 Hrs

- a. Basic concepts in stereochemistry optical activity, specific rotation, racemates and resolution of racemates, the Cahn, Ingold, Prelog (CIP) sequence rule, meso compounds, pseudo asymmetric centres, axes of symmetry, Fischers D and L notation, cis-trans isomerism, E and Z notation.
- b. Methods of asymmetric synthesis using chiral pool, chiral auxiliaries and catalytic asymmetric synthesis, enantiopure separation and Stereo selective synthesis with examples.

- 1. "Advanced Organic chemistry, Reaction, mechanisms and structure", J March, John Wiley and sons, New York.
- 2. "Mechanism and structure in organic chemistry", ES Gould, Hold Rinchart and Winston, New York.
- 3. "Organic Chemistry" Clayden, Greeves, Warren and Woihers., Oxford University Press 2001.
- 4. "Organic Chemistry" Vol I and II. I.L. Finar. ELBS, Sixth ed., 1995.
- 5. Carey, Organic chemistry, 5th edition (Viva Books Pvt. Ltd.)
- 6. Organic synthesis-the disconnection approach, S. Warren, Wily India
- 7. Principles of organic synthesis, ROCNorman and JMCoxan, Nelson thorns
- 8. Organic synthesis- Special techniques VK Ahluwalia and R Aggarwal, Narosa Publishers.
- Organic reaction mechanisms IV edtn, VK Ahluwalia and RK Parashar, Narosa Publishers.

COMPUTER AIDED DRUG DESIGN (MPC 203T)

Scope

The subject is designed to impart knowledge on the current state of the art techniques involved in computer assisted drug design.

Objectives

At completion of this course it is expected that students will be able to understand

- Role of CADD in drug discovery
- Different CADD techniques and their applications
- Various strategies to design and develop new drug like molecules.
- Working with molecular modeling softwares to design new drug molecules
- The in silico virtual screening protocols

Theory 60 Hrs

1. Introduction to Computer Aided Drug Design (CADD) 12
Hrs

History, different techniques and applications.

Quantitative Structure Activity Relationships: Basics

History and development of QSAR: Physicochemical parameters and methods to calculate physicochemical parameters: Hammett equation and electronic parameters (sigma), lipophilicity effects and parameters (log P, pi-substituent constant), steric effects (Taft steric and MR parameters) Experimental and theoretical approaches for the determination of these physicochemical

Quantitative Structure Activity Relationships: Applications Hansch analysis, Free Wilson analysis and relationship between them, Advantages and disadvantages; Deriving 2D-QSAR equations. 12 Hrs

3D-QSAR approaches and contour map analysis.

Statistical methods used in QSAR analysis and importance of statistical parameters.

3 Molecular Modeling and Docking

parameters.

12

a) Molecular and Quantum Mechanics in drug design.

Hrs

b) Energy Minimization Methods: comparison between global

- minimum conformation and bioactive conformation
- Molecular docking and drug receptor interactions: Rigid docking, flexible docking and extra-precision docking. Agents acting on enzymes such as DHFR, HMG-CoA reductase and HIV protease, choline esterase (AchE & BchE)
- 4 Molecular Properties and Drug Design

12

- a) Prediction and analysis of ADMET properties of new Hrs molecules and its importance in drug design.
- b) De novo drug design: Receptor/enzyme-interaction and its analysis, Receptor/enzyme cavity size prediction, predicting the functional components of cavities, Fragment based drug design.
- Homology modeling and generation of 3D-structure of protein.
- Pharmacophore Mapping and Virtual Screening 12
 Concept of pharmacophore, pharmacophore mapping, Hrs
 identification of Pharmacophore features and Pharmacophore
 modeling; Conformational search used in pharmacophore
 mapping.

In Silico Drug Design and Virtual Screening Techniques Similarity based methods and Pharmacophore based screening, structure based In-silico virtual screening protocols.

- 1. Computational and structural approaches to drug discovery, Robert M Stroud and Janet. F Moore, RCS Publishers.
- 2. Introduction to Quantitative Drug Design by Y.C. Martin, CRC Press, Taylor & Francis group..
- 3. Drug Design by Ariens Volume 1 to 10, Academic Press, 1975, Elsevier Publishers.
- 4. Principles of Drug Design by Smith and Williams, CRC Press, Taylor & Francis.
- 5. The Organic Chemistry of the Drug Design and Drug action by Richard B. Silverman. Elsevier Publishers.
- 6. Medicinal Chemistry by Burger, Wiley Publishing Co.

- 7. An Introduction to Medicinal Chemistry -Graham L. Patrick, Oxford University Press.
- 8. Wilson and Gisvold's Text book of Organic Medicinal and Pharmaceutical Chemistry, Ippincott Williams & Wilkins.
- 9. Comprehensive Medicinal Chemistry Corwin and Hansch, Pergamon Publishers.
- 10. Computational and structural approaches to drug design edited by Robert M Stroud and Janet. F Moore

PHARMACEUTICAL PROCESS CHEMISTRY (MPC 204T)

Scope

Process chemistry is often described as scale up reactions, taking them from small quantities created in the research lab to the larger quantities that are needed for further testing and then to even larger quantities required for commercial production. The goal of a process chemist is to develop synthetic routes that are safe, cost-effective, environmentally friendly, and efficient. The subject is designed to impart knowledge on the development and optimization of a synthetic route/s and the pilot plant procedure for the manufacture of Active Pharmaceutical Ingredients (APIs) and new chemical entities (NCEs) for the drug development phase.

Objectives

At completion of this course it is expected that students will be able to understand

- The strategies of scale up process of apis and intermediates
- The various unit operations and various reactions in process chemistry

THEORY 60 Hrs

1. Process chemistry
Introduction, Synthetic strategy
Stages of scale up process: Bench, pilot and large scale process.
In-process control and validation of large scale process.
Case studies of some scale up process of APIs.
Impurities in API, types and their sources including genotoxic impurities

2 Unit operations

12

- a) Extraction: Liquid equilibria, extraction with reflux, Hrs extraction with agitation, counter current extraction.
- b) Filtration: Theory of filtration, pressure and vacuum filtration, centrifugal filtration,
- c) Distillation: azeotropic and steam distillation
- d) Evaporation: Types of evaporators, factors affecting evaporation.
- e) Crystallization: Crystallization from aqueous, nonaqueous solutions factors affecting crystallization, nucleation. Principle and general methods of Preparation of polymorphs, hydrates, solvates and amorphous APIs.

3	Unit Processes - I	12
	 a) Nitration: Nitrating agents, Aromatic nitration, kinetics and mechanism of aromatic nitration, process equipment for technical nitration, mixed acid for nitration, 	Hrs
	 b) Halogenation: Kinetics of halogenations, types of halogenations, catalytic halogenations. Case study on industrial halogenation process. 	
	c) Oxidation: Introduction, types of oxidative reactions, Liquid phase oxidation with oxidizing agents. Nonmetallic Oxidizing agents such as H ₂ O ₂ , sodium hypochlorite, Oxygen gas, ozonolysis.	
4	Unit Processes - II	12
	 a) Reduction: Catalytic hydrogenation, Heterogeneous and homogeneous catalyst; Hydrogen transfer reactions, Metal hydrides. Case study on industrial reduction process. 	Hrs
	b) Fermentation: Aerobic and anaerobic fermentation. Production of	
	i. Antibiotics; Penicillin and Streptomycin,ii. Vitamins: B2 and B12	
	ii. Statins: Lovastatin, Simvastatin	
	c) Reaction progress kinetic analysis	
	i. Streamlining reaction steps, route selection,	
	 ii. Characteristics of expedient routes, characteristics of cost-effective routes, reagent selection, families of reagents useful for scale-up. 	
5	Industrial Safety	12
	 a) MSDS (Material Safety Data Sheet), hazard labels of chemicals and Personal Protection Equipment (PPE) 	Hrs
	b) Fire hazards, types of fire & fire extinguishers	
	c) Occupational Health & Safety Assessment Series 1800 (OHSAS-1800) and ISO-14001(Environmental	
	Management System), Effluents and its management	

- 1. Process Chemistry in the Pharmaceutical Industry: Challenges in an Ever-Changing Climate-An Overview; K. Gadamasetti, CRC Press.
- 2. Pharmaceutical Manufacturing Encyclopedia, 3rd edition, Volume 2.
- 3. Medicinal Chemistry by Burger, 6th edition, Volume 1-8.
- 4. W.L. McCabe, J.C Smith, Peter Harriott. Unit operations of chemical engineering, 7th edition, McGraw Hill
- 5. Polymorphism in Pharmaceutical Solids .Dekker Series Volume 95 Ed: H G Brittain (1999)
- Regina M. Murphy: Introduction to Chemical Processes: Principles, Analysis, Synthesis
- 7. Peter J. Harrington: Pharmaceutical Process Chemistry for Synthesis: Rethinking the Routes to Scale-Up
- 8. P.H.Groggins: Unit processes in organic synthesis (MGH)
- 9. F.A.Henglein: Chemical Technology (Pergamon)
- 10. M.Gopal: Dryden's Outlines of Chemical Technology, WEP East-West Press
- 11. Clausen, Mattson: Principle of Industrial Chemistry, Wiley Publishing Co.,
- 12. Lowenheim & M.K. Moran: Industrial Chemicals
- 13. S.D. Shukla & G.N. Pandey: A text book of Chemical Technology Vol. II, Vikas Publishing House
- 14. J.K. Stille: Industrial Organic Chemistry (PH)
- 15. Shreve: Chemical Process, Mc Grawhill.
- 16. B.K.Sharma: Industrial Chemistry, Goel Publishing House
- 17. ICH Guidelines
- 18. United States Food and Drug Administration official website www.fda.gov

PHARMACEUTICAL CHEMISTRY PRACTICALS – II (MPC 205P)

- 1. Synthesis of organic compounds by adapting different approaches involving (3 experiments)
 - a) Oxidation
 - b) Reduction/hydrogenation
 - c) Nitration
- Comparative study of synthesis of APIs/intermediates by different synthetic routes (2 experiments)
- 3. Assignments on regulatory requirements in API (2 experiments)
- 4. Comparison of absorption spectra by UV and Wood ward Fieser rule
- 5. Interpretation of organic compounds by FT-IR
- 6. Interpretation of organic compounds by NMR
- 7. Interpretation of organic compounds by MS
- 8. Determination of purity by DSC in pharmaceuticals
- 9. Identification of organic compounds using FT-IR, NMR, CNMR and Mass spectra
- 10. To carry out the preparation of following organic compounds
- 11. Preparation of 4-chlorobenzhydrylpiperazine. (an intermediate for cetirizine HCl).
- 12. Preparation of 4-iodotolene from p-toluidine.
- 13. NaBH₄ reduction of vanillin to vanilly alcohol
- 14. Preparation of umbelliferone by Pechhman reaction
- 15. Preparation of triphenyl imidazole
- 16. To perform the Microwave irradiated reactions of synthetic importance (Any two)
- 17. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares
- 18. Calculation of ADMET properties of drug molecules and its analysis using softwares
 - Pharmacophore modeling
- 19. 2D-QSAR based experiments
- 20. 3D-QSAR based experiments
- 21. Docking study based experiment
- 22. Virtual screening based experiment

PHARMACEUTICALANALYSIS(MPA)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MPA 101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives

After completion of course student is able to know about chemicals and excipients

- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 Hrs

- a. UV-Visible spectroscopy: Introduction, Theory, Laws, 10
 Instrumentation associated with UV-Visible spectroscopy, Choice Hrs of solvents and solvent effect and Applications of UV-Visible spectroscopy, Difference/ Derivative spectroscopy.
 - b. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy, Data Interpretation.
 - c. Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence (Characterestics of drugs that can be analysed by flourimetry), Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
 - d. Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.

10

Hrs

- 2 NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.
- 3 Mass Spectroscopy: Principle, Theory, Instrumentation of Mass 10

Spectroscopy, Different types of ionization like electron impact, Hrs chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy.

- 4 Chromatography: Principle. apparatus, instrumentation. 10 chromatographic parameters, factors affecting resolution, isolation of drug from excipients, data interpretation and applications of the following:
 - a. Thin Layer chromatography
 - b. High Performance Thin Layer Chromatography
 - c. Ion exchange chromatography
 - d. Column chromatography
 - e. Gas chromatography
 - f. High Performance Liquid chromatography
 - g. Ultra High Performance Liquid chromatography
 - h. Affinity chromatography
 - i. Gel Chromatography
- 5 Principle. a. Electrophoresis: Instrumentation. Working 10 conditions, factors affecting separation and applications of the following:
 - a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso electric focusing
 - b. X ray Crystallography: Production of X rays, Different X ray methods, Bragg's law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction
- 6 Potentiometry: Principle, working, Ion selective Electrodes and 10 Application of potentiometry. Hrs

Techniques: Principle, thermal Thermal transitions Instrumentation (Heat flux and power-compensation and designs), Modulated DSC, Hyper DSC, experimental parameters (sample preparation, experimental conditions, calibration, heating and cooling rates, resolution, source of errors) and their influence, advantage and disadvantages, pharmaceutical applications. Differential Thermal Analysis (DTA): Principle, instrumentation

and advantage and disadvantages, pharmaceutical applications, derivative differential thermal analysis (DDTA). TGA: Principle, instrumentation, factors affecting results, advantage and disadvantages, pharmaceutical applications.

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis Modern Methods Part B J W Munson, Vol 11, Marcel. Dekker Series
- 8. Spectroscopy of Organic Compounds, 2nd edn., P.S/Kalsi, Wiley estern Ltd., Delhi.
- 9. Textbook of Pharmaceutical Analysis, KA.Connors, 3rd Edition, John Wiley & Sons, 1982.

ADVANCED PHARMACEUTICAL ANALYSIS (MPA 102T)

Scope

This subject deals with the various aspects of Impurity, Impurities in new drug products, in residual solvents, Elemental impurities, Impurity profiling and characterization of degradents, Stability testing of phytopharmaceuticals and their protocol preparation. It also covers the biological testing of various vaccines and their principle and procedure.

Objective

After completion of the course students shall able to know,

- Appropriate analytical skills required for the analytical method development.
- Principles of various reagents used in functional group analysis that renders necessary support in research methodology and demonstrates its application in the practical related problems.
- Analysis of impurities in drugs, residual solvents and stability studies of drugs and biological products

THEORY 60 Hrs

Impurity and stability studies: 10
 Definition, classification of impurities in drug Substance or Active Pharmaceutical Ingredients and quantification of impurities as per

Impurities in new drug products:

ICH auidelines

Rationale for the reporting and control of degradation products, reporting degradation products content of batches, listing of degradation products in specifications, qualification of degradation products

Impurities in residual solvents:

General principles, classification of residual solvents, Analytical procedures, limits of residual solvents, reporting levels of residual solvents

2 Elemental impurities: 10
Element classification, control of elemental impurities, Potential Hrs
Sources of elemental Impurities, Identification of Potential
Elemental Impurities, analytical procedures, instrumentation & C,
H, N and S analysis

Stability testing protocols:

Selection of batches, container orientation, test parameters, sampling frequency, specification, storage conditions, recording of results, concept of stability, commitment etc. Important mechanistic and stability related information provided by results of study of factors like temperature, pH, buffering species ionic strength and dielectric constant etc. on the reaction rates. With practical considerations.

- Impurity profiling and degradent characterization: Method 10 development, Stability studies and concepts of validation Hrs accelerated stability testing & shelf life calculation, WHO and ICH stability testing guidelines, Stability zones, steps in development, practical considerations. Basics of impurity profiling and degradent characterization with special emphasis. Photostability testing guidelines, ICH stability guidelines for biological products
- 4 Stability testing of phytopharmaceuticals: 10 Regulatory requirements, protocols, HPTLC/HPLC finger printing, interactions and complexity.
- Biological tests and assays of the following:

 a. Adsorbed Tetanus vaccine b. Adsorbed Diphtheria vaccine Hrs

 c. Human anti haemophilic vaccine d. Rabies vaccine e.

 Tetanus Anti toxin f. Tetanus Anti serum g. Oxytocin h.

 Heparin sodium IP i. Antivenom. PCR, PCR studies for gene regulation, instrumentation (Principle and Procedures)
- 6 Immunoassays (IA) 10
 Basic principles, Production of antibodies, Separation of bound Hrs
 and unbound drug, Radioimmunoassay, Optical IA, Enzyme IA,
 Fluoro IA, Luminiscence IA, Quantification and applications of IA.

- Vogel's textbook of quantitative chemical analysis Jeffery J Bassett, J. Mendham, R. C. Denney, 5th edition, ELBS, 1991.
- 2. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th Edition, CBS publishers, New Delhi, 1997.
- 3. Textbook of Pharmaceutical Analysis K A Connors, 3rd Edition, John Wiley & Sons, 1982.

- 4. Pharmaceutical Analysis Higuchi, Brochmman and Hassen, 2nd Edition, Wiley Inter science Publication, 1961.
- 5. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers New Delhi, 1997.
- Pharmaceutical Analysis- Modern methods J W Munson Part B, Volume 11, Marcel Dekker Series.
- 7. The Quantitative analysis of Drugs D C Carratt, 3rd edition, CBS Publishers, NewDelhi, 1964.
- 8. Indian Pharmacopoeia Vol I, II & III 2007, 2010, 2014.
- 9. Methods of sampling and microbiological examination of water, first revision, BIS
- 10. Practical HPLC method development Snyder, Kirkland, Glajch, 2nd edition, John Wiley & Sons.
- 11. Analytical Profiles of drug substances Klaus Florey, Volume 1 20, Elsevier, 2005
- 12. Analytical Profiles of drug substances and Excipients Harry G Brittan, Volume 21 30, Elsevier, 2005.
- 13. The analysis of drugs in biological fluids Joseph Chamberlain, 2nd edition, CRC press, London.
- 14. ICH Guidelines for impurity profiles and stability studies.

PHARMACEUTICAL VALIDATION (MPA 103T)

Scope

The main purpose of the subject is to understand about validation and how it can be applied to industry and thus to improve the quality of the products. The subject covers the complete information about validation, types, methodology and application.

Objectives

Upon completion of the subject student shall be able to

- Explain the aspect of validation
- Carryout validation of manufacturing processes
- Apply the knowledge of validation to instruments and equipments
- Validate the manufacturing facilities

- 1. Introduction: Definition of Qualification and Validation, 12 Advantage of Validation, Streamlining of Qualification & Validation Hrs process and Validation Master Plan.
 - Qualification: User Requirement Specification, Design Qualification, Factory Acceptance Test (FAT)/ Site Acceptance Test (SAT), Installation Qualification, Operational Qualification, Performance Qualification, Re- Qualification (Maintaining status-Calibration Preventive Maintenance, Change management), Qualification of Manufacturing Equipments, Qualification of Analytical Instruments and Laboratory equipments.
- Qualification of analytical instruments: Electronic balance, pH meter, UV-Visible spectrophotometer, FTIR, GC, HPLC, HPTLC Ualification of Glassware: Volumetric flask, pipette, Measuring cylinder, beakers and burette.
- 3 Validation of Utility systems: Pharmaceutical Water System & 12 pure steam, HVAC system, Compressed air and nitrogen. Hrs Cleaning Validation: Cleaning Validation Cleaning Method development, Validation and validation of analytical method used in cleaning. Cleaning of Equipment, Cleaning of Facilities. Cleaning in place (CIP).
- 4 Analytical method validation: General principles, Validation of analytical method as per ICH guidelines and USP.

- Computerized system validation: Electronic records and digital significance-21 CFR part 11 and GAMP 5.
- 5 General Principles of Intellectual Property: Concepts of 12 Intellectual Property (IP), Intellectual Property Protection (IPP), Hrs Economic Property Rights (IPR); importance. mechanism for protection of Intellectual Property -patents, Copyright, Trademark; Factors affecting choice of IP protection; Penalties for violation: Role of IP in pharmaceutical industry: Global ramification and financial implications. Filing a patent applications; patent application forms and guidelines. Types patent applications-provisional and non-provisional, PCT and convention patent applications; International patenting requirement procedures and costs; Rights and responsibilities of a patentee; Practical aspects regarding maintaining of a Patent file; Patent infringement meaning and scope. Significance of transfer technology (TOT), IP and ethics-positive and negative aspects of IPP; Societal responsibility, avoiding unethical practices.

- 1. B. T. Loftus & R. A. Nash, "Pharmaceutical Process Validation", Drugs and Pharm Sci. Series, Vol. 129, 3rd Ed., Marcel Dekker Inc., N.Y.
- 2. The Theory & Practice of Industrial Pharmacy, 3rd edition, Leon Lachman, Herbert A. Lieberman, Joseph. L. Karig, Varghese Publishing House, Bombay.
- 3. Validation Master plan by Terveeks or Deeks, Davis Harwood International publishing.
- 4. Validation of Aseptic Pharmaceutical Processes, 2nd Edition, by Carleton & Agalloco, (Marcel Dekker).
- 5. Michael Levin, Pharmaceutical Process Scale-Up∥, Drugs and Pharm. Sci. Series, Vol. 157,2nd Ed., Marcel Dekker Inc., N.Y.
- 6. Validation Standard Operating Procedures: A Step by Step Guide for Achieving Compliance in the Pharmaceutical, Medical Device, and Biotech Industries, Syed Imtiaz Haider
- 7. Pharmaceutical Equipment Validation: The Ultimate Qualification Handbook, Phillip A. Cloud, Interpharm Press
- 8. Validation of Pharmaceutical Processes: Sterile Products, Frederick J. Carlton (Ed.) and James Agalloco (Ed.), Marcel Dekker, 2nd Ed.
- 9. Analytical Method validation and Instrument Performance Verification by Churg Chan, Heiman Lam, Y.C. Lee, Yue. Zhang, Wiley Inter Science.

FOOD ANALYSIS (MPA 104T)

Scope

This course is designed to impart knowledge on analysis of food constituents and finished food products. The course includes application of instrumental analysis in the determination of pesticides in variety of food products.

Objectives

At completion of this course student shall be able to understand various analytical techniques in the determination of

- Food constituents
- Food additives
- Finished food products
- Pesticides in food
- And also student shall have the knowledge on food regulations and legislations

- 1. Carbohydrates: classification and properties of food 12 carbohydrates, General methods of analysis of food Hrs carbohydrates, Changes in food carbohydrates during processing, Digestion, absorption and metabolism of carbohydrates, Dietary fibre. Crude fibre and application of food carbohydrates Proteins: Chemistry and classification of amino acids and proteins, Physico-Chemical properties of protein and their structure, general methods of analysis of proteins and amino acids, Digestion, absorption and metabolism of proteins.
- 2 Lipids: Classification, general methods of analysis, refining of fats 12 and oils; hydrogenation of vegetable oils, Determination of Hrs adulteration in fats and oils, Various methods used for measurement of spoilage of fats and fatty foods.
 Vitamins: classification of vitamins, methods of analysis of vitamins, Principles of microbial assay of vitamins of B-series.
- 3 Food additives: Introduction, analysis of Preservatives, 12 antioxidants, artificial sweeteners, flavors, flavor enhancers, Hrs stabilizers, thickening and jelling agents.

 Pigments and synthetic dyes: Natural pigments, their occurrence and characteristic properties, permitted synthetic

- dyes, Non-permitted synthetic dyes used by industries, Method of detection of natural, permitted and non-permitted dyes.
- 4 General Analytical methods for milk, milk constituents and milk 12 products like ice cream, milk powder, butter, margarine, cheese Hrs including adulterants and contaminants of milk.
 Analysis of fermentation products like wine, spirits, beer and
- Pesticide analysis: Effects of pest and insects on various food, 12 use of pesticides in agriculture, pesticide cycle, Hrs organophosphorus and organochlorine pesticides analysis, determination of pesticide residues in grain, fruits, vegetables, milk and milk products.

 Legislation regulations of food products with special emphasis on BIS, Agmark, FDA and US-FDA.

REFERENCES

vinegar.

- 1. The chemical analysis of foods David Pearson, Seventh edition, Churchill Livingstone, Edinburgh London, 1976
- 2. Introduction to the Chemical analysis of foods S. Nielsen, Jones & Bartlett publishers, Boston London, 1994.
- 3. Official methods of analysis of AOAC International, sixth edition, Volume I & II. 1997.
- 4. Analysis of Food constituents Multon, Wiley VCH.
- 5. Dr. William Horwitz, Official methods of analysis of AOAC International, 18th edition, 2005.

PHARMACEUTICAL ANALYSIS PRACTICALS - II (MPA 105P)

- Analysis of Pharmacopoeial compounds and their formulations by UV Vis spectrophotometer
- 2. Simultaneous estimation of multi component containing formulations by UV spectrophotometry
- 3. Experiments based on HPLC
- 4. Experiments based on Gas Chromatography
- 5. Estimation of riboflavin/quinine sulphate by fluorimetry
- 6. Estimation of sodium/potassium by flame photometry
- 7. Assay of official compounds by different titrations
- 8. Assay of official compounds by instrumental techniques.
- 9. Quantitative determination of hydroxyl group.
- 10. Quantitative determination of amino group
- 11. Colorimetric determination of drugs by using different reagents
- 12. Imapurity profiling of drugs
- 13. Calibration of glasswares
- 14. Calibration of pH meter
- 15. Calibration of UV-Visible spectrophotometer
- 16. Calibration of FTIR spectrophotometer
- 17. Calibration of GC instrument
- 18. Calibration of HPLC instrument
- 19. Cleaning validation of any one equipment
- 20. Determination of total reducing sugar
- 21. Determination of proteins
- 22. Determination of saponification value, Iodine value, Peroxide value, Acid value in food products
- 23. Determination of fat content and rancidity in food products
- 24. Analysis of natural and synthetic colors in food
- 25. Determination of preservatives in food
- 26. Determination of pesticide residue in food products
- 27. Analysis of vitamin content in food products
- 28. Determination of density and specific gravity of foods
- 29. Determination of food additives

ADVANCED INSTRUMENTAL ANALYSIS (MPA 201T)

Scope

This subject deals with various hyphenated analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are LC-MS, GC-MS, and hyphenated techniques.

Objectives

After completion of course student is able to know,

- interpretation of the NMR, Mass and IR spectra of various organic compounds
- theoretical and practical skills of the hyphenated instruments
- identification of organic compounds

- 1. HPLC: Principle, instrumentation, pharmaceutical applications, 12 peak shapes, capacity factor, selectivity, plate number, plate Hrs height, resolution, band broadening, pumps, injector, detectors, columns, column problems, gradient HPLC, HPLC solvents, trouble shooting, sample preparation, method development. New developments in HPLC-role and principles of ultra, nano liquid chromatography in pharmaceutical analysis. Immobilized polysaccharide CSP's: Advancement in enantiomeric separations, revised phase Chiral method development and HILIC approaches. HPLC in Chiral analysis of pharmaceuticals. Preparative HPLC, practical aspects of preparative HPLC.
- 2 Biochromatography: Size exclusion chromatography, ion 12 exchange chromatography, ion pair chromatography, affinity Hrs chromatography general principles, stationary phases and mobile phases.
 - Gas chromatography: Principles, instrumentation, derivatization, head space sampling, columns for GC, detectors, quantification. High performance Thin Layer chromatography: Principles, instrumentation, pharmaceutical applications.
- 3 Super critical fluid chromatography: Principles, 12 instrumentation, pharmaceutical applications. Hrs Capillary electrophoresis: Overview of CE in pharmaceutical analysis, basic configuration, CE characteristics, principles of CE, methods and modes of CE. General considerations and method

- development in CE, Crown ethers as buffer additives in capillary electrophoresis. CE-MS hyphenation.
- 4 Mass spectrometry: Principle, theory, instrumentation of mass spectrometry, different types of ionization like electron impact, chemical, field, FAB and MALD, APCI, ESI, APPI mass fragmentation and its rules, meta stable ions, isotopic peaks and applications of mass spectrometry. LC-MS hyphenation and DART MS analysis. Mass analysers (Quadrpole, Time of flight, FT-ICR, ion trap and Orbitrap) instruments. MS/MS systems (Tandem: QqQ, TOF-TOF;Q-IT, Q-TOF, LTQ-FT, LTQ-Orbitrap.
- NMR spectroscopy: Quantum numbers and their role in NMR, 12 Principle, Instrumentation, Solvent requirement in NMR, Hrs Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR with reference to 13CNMR: Spin spin and spin lattice relaxation phenomenon. 13C NMR, 1-D and 2-D NMR, NOESY and COSY techniques, Interpretation and Applications of NMR spectroscopy. LC-NMR hyphenations.

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers.
- 4. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 5. Quantitative analysis of Pharmaceutical formulations by HPTLC P D Sethi, CBS Publishers, New Delhi.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11. Marcel Dekker Series.
- 8. Organic Spectroscopy by Donald L. Paviya, 5th Edition.

MODERN BIO-ANALYTICAL TECHNIQUES (MPA 202T)

Scope

This subject is designed to provide detailed knowledge about the importance of analysis of drugs in biological matrices.

Objectives

Upon completion of the course, the student shall be able to understand

- Extraction of drugs from biological samples
- Separation of drugs from biological samples using different techniques
- Guidelines for BA/BF studies.

- Extraction of drugs and metabolites from biological matrices: 12
 General need, principle and procedure involved in the Hrs Bioanalytical methods such as Protein precipitation, Liquid Liquid extraction and Solid phase extraction and other novel sample preparation approach.
 Bioanalytical method validation: USFDA and EMEA guidelines.
- 2 Biopharmaceutical Consideration:
 Introduction, Biopharmaceutical Factors Affecting Drug Hrs
 Bioavailability, In Vitro: Dissolution and Drug Release Testing,
 Alternative Methods of Dissolution Testing Transport models,
 Biopharmaceutics Classification System. Solubility: Experimental
 methods. Permeability: In-vitro, in-situ and In-vivo methods.
- Basic consideration, Drug interaction (PK-PD interactions), The effect of protein-binding interactions, The effect of tissue-binding interactions, Cytochrome P450-based drug interactions, Drug interactions linked to transporters. Microsomal assays Toxicokinetics-Toxicokinetic evaluation in preclinical studies, Importance and applications of toxicokinetic studies. LC-MS in bioactivity screening and proteomics.
- 4 Cell culture techniques
 Basic equipments used in cell culture lab. Cell culture media, various types of cell culture, general procedure for cell cultures; isolation of cells, subculture, cryopreservation, characterization of

cells and their applications. Principles and applications of cell viability assays (MTT assays), Principles and applications of flow cytometry.

5 Metabolite identification:

12 Hrs

In-vitro / in-vivo approaches, protocols and sample preparation. Microsomal approaches (Rat liver microsomes (RLM) and Human liver microsomes (HLM) in Met -ID. Regulatory perspectives. In-vitro assay of drug metabolites & drug metabolizing enzymes.

Drug Product Performance, In Vivo: Bioavailability and Bioequivalence:

Drug Product Performance, Purpose of Bioavailability Studies, Relative and Absolute Availability. Methods for Assessing Bioavailability, Bioequivalence Studies, Design and Evaluation of Bioequivalence Studies, Study Designs, Crossover Study Designs, Generic Biologics (Biosimilar Drug Products), Clinical Significance of Bioequivalence Studies.

- Analysis of drugs in Biological fluids Joseph Chamberlain, 2nd Edition. CRC Press, Newyork. 1995.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Pharmaceutical Analysis Higuchi, Brochmman and Hassen, 2nd Edition, Wiley Interscience Publications, 1961.
- Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11, Marcel Dekker Series
- 5. Practical HPLC method Development Snyder, Kirkland, Glaich, 2nd Edition, John Wiley & Sons, New Jercy. USA.
- 6. Chromatographic Analysis of Pharmaceuticals John A Adamovics, 2nd Edition, Marcel Dekker, Newyork, USA. 1997.
- 7. Chromatographic methods in clinical chemistry & Toxicology Roger L Bertholf, Ruth E Winecker, John Wiley & Sons, New Jercy, USA. 2007.
- 8. Good Laboratory Practice Regulations, 2nd Edition, Sandy Weinberg Vol. 69, Marcel Dekker Series, 1995.
- Good laboratory Practice Regulations Allen F. Hirsch, Volume 38, Marcel Dekker Series, 1989.
- 10. ICH, USFDA & CDSCO Guidelines.
- 11. Palmer

QUALITY CONTROL AND QUALITY ASSURANCE (MPA 203T)

Scope

This course deals with the various aspects of quality control and quality assurance aspects of pharmaceutical industries. It covers the important aspects like cGMP, QC tests, documentation, quality certifications, GLP and regulatory affairs.

Objectives

At the completion of this subject it is expected that the student shall be able to know

- the cGMP aspects in a pharmaceutical industry
- to appreciate the importance of documentation
- to understand the scope of quality certifications applicable to Pharmaceutical industries
- to understand the responsibilities of QA & QC departments

- 1. Concept and Evolution of Quality Control and Quality
 Assurance
 Good Laboratory Practice, GMP, Overview of ICH Guidelines QSEM, with special emphasis on Q-series guidelines.
 Good Laboratory Practices: Scope of GLP, Definitions, Quality
 assurance unit, protocol for conduct of non clinical testing, control
 on animal house, report preparation and documentation.
- cGMP guidelines according to schedule M, USFDA (inclusive of CDER and CBER) Pharmaceutical Inspection Convention Hrs (PIC), WHO and EMEA covering: Organization and personnel responsibilities, training, hygiene and personal records, drug industry location, design, construction and plant lay out, maintenance, sanitation, environmental control, utilities and maintenance of sterile areas, control of contamination and Good Warehousing Practice. CPCSEA guidelines.
- Analysis of raw materials, finished products, packaging 12 materials, in process quality control (IPQC), Developing Hrs specification (ICH Q6 and Q3)

Purchase specifications and maintenance of stores for raw materials. In process quality control and finished products quality control for following formulation in Pharma industry according to Indian, US and British pharmacopoeias: tablets, capsules, ointments, suppositories, creams, parenterals, ophthalmic and surgical products (How to refer pharmacopoeias), Quality control test for containers, closures and secondary packing materials.

12

- 4. Documentation in pharmaceutical industry: Three tier Hrs documentation, Policy, Procedures and Work instructions, and records (Formats), Basic principles- How to maintain, retention and retrieval etc. Standard operating procedures (How to write), Master Formula Record, Batch Formula Record, Quality audit plan and reports. Specification and test procedures, Protocols and reports. Distribution records. Electronic data.
- 12 5. Manufacturing operations and controls: Sanitation of Hrs mix-ups and cross contamination, manufacturing premises, of intermediates and bulk products, packaging operations, IPQC, release of finished product, process deviations, charge-in of components, time limitations on production, drug product inspection, expiry date calculation, calculation of yields, production record review, change control, sterile products, aseptic process control, packaging.

- 1. Quality Assurance Guide by organization of Pharmaceutical Procedures of India, 3rd revised edition, Volume I & II, Mumbai, 1996.
- 2. Good Laboratory Practice Regulations, 2nd Edition, Sandy Weinberg Vol. 69. Marcel Dekker Series, 1995.
- 3. Quality Assurance of Pharmaceuticals- A compedium of Guide lines and Related materials Vol I & II, 2nd edition, WHO Publications, 1999.
- 4. How to Practice GMP's P P Sharma, Vandana Publications, Agra, 1991.
- 5. The International Pharmacopoeia vol I, II, III, IV & V General Methods of Analysis and Quality specification for Pharmaceutical Substances. Excepients and Dosage forms, 3rd edition, WHO, Geneva, 2005.
- 6. Good laboratory Practice Regulations Allen F. Hirsch, Volume 38, Marcel Dekker Series, 1989.
- 7. ICH quidelines
- 8. ISO 9000 and total quality management

- 9. The drugs and cosmetics act 1940 Deshpande, Nilesh Gandhi, 4th edition, Susmit Publishers, 2006.
- 10. QA Manual D.H. Shah, 1st edition, Business Horizons, 2000.
- 11. Good Manufacturing Practices for Pharmaceuticals a plan for total quality control Sidney H. Willig, Vol. 52, 3rd edition, Marcel Dekker Series.
- 12. Steinborn L. GMP/ISO Quality Audit Manual for Healthcare Manufacturers and Their Suppliers, Sixth Edition, (Volume 1 With Checklists and Software Package). Taylor & Francis; 2003.
- 13. Sarker DK. Quality Systems and Controls for Pharmaceuticals. John Wiley & Sons; 2008.

HERBAL AND COSMETIC ANALYSIS (MPA 204T)

Scope

This course is designed to impart knowledge on analysis of herbal products. Regulatory requirements, herbal drug interaction with monographs. Performance evaluation of cosmetic products is included for the better understanding of the equipments used in cosmetic industries for the purpose.

Objectives

At completion of this course student shall be able to understand

- Determination of herbal remedies and regulations
- Analysis of natural products and monographs
- Determination of Herbal drug-drug interaction
- Principles of performance evaluation of cosmetic products.

- Herbal remedies- Toxicity and Regulations: Herbals vs 12
 Conventional drugs, Efficacy of herbal medicine products, Hrs
 Validation of Herbal Therapies, Pharmacodynamic and
 Pharmacokinetic issues. Herbal drug standardization: WHO and
 AYUSH guidelines.
- Adulteration and Deterioration: Introduction, types of 12 adulteration/substitution of herbal drugs, Causes and Measure of Hrs adulteration, Sampling Procedures, Determination of Foreign Matter, DNA Finger printing techniques in identification of drugs of natural origin, heavy metals, pesticide residues, phototoxin and microbial contamination in herbal formulations. Regulatory requirements for setting herbal drug industry: Global marketing management, Indian and international patent law as applicable herbal drugs and natural products and its protocol.
- 3 Testing of natural products and drugs: Effect of herbal 12 medicine on clinical laboratory testing, Adulterant Screening using Hrs modern analytical instruments, Regulation and dispensing of herbal drugs, Stability testing of natural products, protocol.
 - Monographs of Herbal drugs: Study of monographs of herbal drugs and comparative study in IP, USP, Ayurvedic

Pharmacopoeia, American herbal Pharmacopoeia, British herbal Pharmacopoeia, Siddha and Unani Pharmacopoeia, WHO guidelines in quality assessment of herbal drugs.

4 Herbal drug-drug interaction: WHO and AYUSH guidelines for 12 safety monitoring of natural medicine, Spontaneous reporting Hrs schemes for bio drug adverse reactions, bio drug-drug and bio drug-food interactions with suitable examples. Challenges in monitoring the safety of herbal medicines.

12

5 Evaluation of cosmetic products: Determination of acid value, ester value, saponification value, iodine value, peroxide value, rancidity, moisture, ash, volatile matter, heavy metals, fineness of powder, density, viscosity of cosmetic raw materials and finished products. Study of quality of raw materials and general methods of analysis of raw material used in cosmetic manufacture as per BIS.

Indian Standard specification laid down for sampling and testing of various cosmetics in finished forms such as baby care products, skin care products, dental products, personal hygiene preparations, lips sticks. Hair products and skin creams by the Bureau Indian Standards.

- 1. Pharmacognosy by Trease and Evans
- 2. Pharmacognosy by Kokate, Purohit and Gokhale
- 3. Quality Control Methods for Medicinal Plant, WHO, Geneva
- 4. Pharmacognosy & Pharmacobiotechnology by Ashutosh Kar
- 5. Essential of Pharmacognosy by Dr.S.H.Ansari
- 6. Cosmetics Formulation, Manufacturing and Quality Control, P.P. Sharma, 4th edition, Vandana Publications Pvt. Ltd., Delhi
- 7. Indian Standard specification, for raw materials, BIS, New Delhi.
- 8. Indian Standard specification for 28 finished cosmetics BIS. New Delhi
- 9. Harry's Cosmeticology 8th edition
- 10. Suppliers catalogue on specialized cosmetic excipients
- 11. Wilkinson, Moore, seventh edition, George Godwin. Poucher's Perfumes, Cosmetics and Soaps
- 12. Hilda Butler, 10th Edition, Kluwer Academic Publishers. Handbook of Cosmetic Science and Technology, 3rd Edition,

PHARMACEUTICAL ANALYSIS PRACTICALS - I (MPA 205P)

- 1. Comparison of absorption spectra by UV and Wood ward Fiesure rule
- 2. Interpretation of organic compounds by FT-IR
- 3. Interpretation of organic compounds by NMR
- 4. Interpretation of organic compounds by MS
- 5. Determination of purity by DSC in pharmaceuticals
- 6. Identification of organic compounds using FT-IR, NMR, CNMR and Mass spectra
- 7. Bio molecules separation utilizing various sample preparation techniques and Quantitative analysis of components by gel electrophoresis.
- 8. Bio molecules separation utilizing various sample preparation techniques and Quantitative analysis of components by HPLC techniques.
- 9. Isolation of analgesics from biological fluids (Blood serum and urine).
- 10. Protocol preparation and performance of analytical/Bioanalytical method validation.
- 11. Protocol preparation for the conduct of BA/BE studies according to guidelines.
- 12. In process and finished product quality control tests for tablets, capsules, parenterals and creams
- 13. Quality control tests for Primary and secondary packing materials
- 14. Assay of raw materials as per official monographs
- 15. Testing of related and foreign substances in drugs and raw materials
- 16. Preparation of Master Formula Record.
- 17. Preparation of Batch Manufacturing Record.
- 18. Quantitative analysis of rancidity in lipsticks and hair oil
- 19. Determination of aryl amine content and Developer in hair dye
- 20. Determination of foam height and SLS content of Shampoo.
- 21. Determination of total fatty matter in creams (Soap, skin and hair creams)
- 22. Determination of acid value and saponification value.
- 23. Determination of calcium thioglycolate in depilatories

PHARMACEUTICALQUALITYASSURANCE(MQA)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MQA 101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives

After completion of course student is able to know about chemicals and excipients

- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 Hrs

- a. UV-Visible spectroscopy: Introduction, Theory, Laws, 12
 Instrumentation associated with UV-Visible spectroscopy, Choice Hrs of solvents and solvent effect and Applications of UV-Visible spectroscopy, Difference/ Derivative spectroscopy.
 - b. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy, Data Interpretation.
 - c. Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence (Characterestics of drugs that can be analysed by flourimetry), Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
 - d. Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.
- 2 NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

12 Hrs

- 3 Mass Spectroscopy: Principle, Theory, Instrumentation of Mass 12 Spectroscopy, Different types of ionization like electron impact, Hrs chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy.
- 4 Chromatography: Principle, apparatus, instrumentation, 12 chromatographic parameters, factors affecting resolution, isolation Hrs of drug from excipients, data interpretation and applications of the following:
 - Thin Layer chromatography
 - High Performance Thin Layer Chromatography
 - Ion exchange chromatography
 - Column chromatography
 - Gas chromatography
 - High Performance Liquid chromatography
 - Ultra High Performance Liquid chromatography
 - Affinity chromatography
 - Gel Chromatography
- 5 a. Electrophoresis: Principle, Instrumentation, Working 12 conditions, factors affecting separation and applications of the Hrs following:
 - a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso electric focusing
 - b. X ray Crystallography: Production of X rays, Different X ray methods, Bragg's law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.

12

Hrs

- a. Potentiometry: Principle, working, Ion selective Electrodes and Application of potentiometry.
 - b. Thermal Techniques: Principle, thermal transitions and Instrumentation (Heat flux and power-compensation and designs), Modulated DSC, Hyper DSC, experimental parameters (sample preparation, experimental conditions, calibration, heating and cooling rates, resolution, source of errors) and their influence, advantage and disadvantages, pharmaceutical applications. Differential Thermal Analysis (DTA): Principle, instrumentation

and advantage and disadvantages, pharmaceutical applications, derivative differential thermal analysis (DDTA). TGA: Principle, instrumentation, factors affecting results, advantage and disadvantages, pharmaceutical applications.

- Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition. John Wiley & Sons. 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis Modern Methods Part B J W Munson, Vol 11, Marcel. Dekker Series
- 8. Spectroscopy of Organic Compounds, 2nd edn., P.S/Kalsi, Wiley estern Ltd., Delhi.
- 9. Textbook of Pharmaceutical Analysis, KA.Connors, 3rd Edition, John Wiley & Sons, 1982.
- 10. Textbook of Pharmaceutical Analysis, KA.Connors, 3rd Edition, John Wiley & Sons, 1982.

QUALITY MANAGEMENT SYSTEMS (MQA 102T)

Scope

This course is designed to impart fundamental knowledge and concepts about various quality management principles and systems utilized in the manufacturing industry. It also aids in understanding the quality evaluation in the pharmaceutical industries.

Objectives

At completion of this course it is expected that students will be able to understand-

- The importance of quality
- ISO management systems
- Tools for quality improvement
- Analysis of issues in quality
- · Quality evaluation of pharmaceuticals
- Stability testing of drug and drug substances
- Statistical approaches for quality

THEORY 60 Hrs

Introduction to Quality: Evolution of Quality, Definition of 12
 Quality, Dimensions of Quality
 Hrs

Quality as a Strategic Decision: Meaning of strategy and strategic quality management, mission and vision statements, quality policy, Quality objectives, strategic planning and implementation, McKinsey 7s model, Competitive analysis, Management commitment to quality

Customer Focus: Meaning of customer and customer focus, Classification of customers, Customer focus, Customer perception of quality, Factors affecting customer perception, Customer requirements, Meeting customer needs and expectations, Customer satisfaction and Customer delight, Handling customer complaints, Understanding customer behavior, concept of internal and external customers. Case studies.

Cost of Quality: Cost of quality, Categories of cost of Quality, Models of cost of quality, Optimising costs, Preventing cost of quality.

- Pharmaceutical quality Management: Basics of Quality 12 Management, Total Quality Management (TQM), Principles of Six Hrs sigma, ISO 9001:2008, 9001:2015, ISO 14001:2004, Pharmaceutical Quality Management ICH Q10, Knowledge management, Quality Metrics, Operational Excellence and Quality Management Review. OSHAS guidelines, NABL certification and accreditation, CFR-21 part 11, WHO-GMP requirements.
- 3 Six System Inspection model: Quality Management system, 12 Production system, Facility and Equipment system, Laboratory Hrs control system, Materials system, Packaging and labeling system. Concept of self inspection.
 Quality systems: Change Management/ Change control. Deviations, Out of Specifications (OOS), Out of Trend (OOT), Complaints evaluation and handling, Investigation and determination of root cause, Corrective & Preventive Actions (CAPA), Returns and Recalls, Vendor Qualification, Annual Product Reviews, Batch Review and Batch Release. Concept of IPQC, area clearance/ Line clearance.
- 4 Drug Stability: ICH guidelines for stability testing of drug 12 substances and drug products.

 Study of ICH Q8, Quality by Design and Process development report

 Quality risk management: Introduction, risk assessment, risk control, risk review, risk management tools, HACCP, risk ranking and filtering according to ICH Q9 guidelines.
- 5 Statistical Process control (SPC): Definition and Importance of 8 Hrs SPC, Quality measurement in manufacturing, Statistical control charts concepts and general aspects, Advantages of statistical control, Process capability, Estimating Inherent or potential capability from a control chart analysis, Measuring process control and quality improvement, Pursuit of decreased process variability.
- 6 Regulatory Compliance through Quality Management and 4 Hrs development of Quality Culture

 Benchmarking: Definition of benchmarking, Reasons for benchmarking, Types of Benchmarking, Benchmarking process, Advantages of benchmarking, Limitations of benchmarking.

- Implementing Juran's Road Map for Quality Leadership: Benchmarks and Results, By Al Endres, Wiley, 2000
- 2. Understanding, Managing and Implementing Quality: Frameworks, Techniques and Cases, By Jiju Antony; David Preece, Routledge, 2002
- 3. Organizing for High Performance: Employee Involvement, TQM, Reengineering, and Knowledge Management in the Fortune 1000: The CEO Report By Edward E. Lawler; Susan Albers Mohrman; George Benson, Jossey-Bass, 2001
- 4. Corporate Culture and the Quality Organization By James W. Fairfield-Sonn, Quorum Books, 2001
- 5. The Quality Management Sourcebook: An International Guide to Materials and Resources By Christine Avery; Diane Zabel, Routledge, 1997
- 6. The Quality Toolbox, Second Edition, Nancy R. Tague, ASQ Publications
- 7. Juran's Quality Handbook, Sixth Edition, Joseph M. Juran and Joseph A. De Feo, ASQ Publications
- 8. Root Cause Analysis, The Core of Problem Solving and Corrective Action, Duke Okes, 2009, ASQ Publications.

QUALITY CONTROL AND QUALITY ASSURANCE (MQA 103T)

Scope

This course deals with the various aspects of quality control and quality assurance aspects of pharmaceutical industries. It covers the important aspects like cGMP, QC tests, documentation, quality certifications, GLP and regulatory affairs.

Objectives

Upon completion of this course the student should be able to

- Understand the cGMP aspects in a pharmaceutical industry
- To appreciate the importance of documentation
- To understand the scope of quality certifications applicable to Pharmaceutical industries
- To understand the responsibilities of QA & QC departments.

- Introduction: Concept and evolution and scopes of Quality 12
 Control and Quality Assurance, Good Laboratory Practice, GMP, Hrs
 Overview of ICH Guidelines QSEM, with special emphasis on Q-series guidelines.
 - Good Laboratory Practices: Scope of GLP, Definitions, Quality assurance unit, protocol for conduct of non clinical testing, control on animal house, report preparation and documentation. CPCSEA guidelines.
- 2 cGMP guidelines according to schedule M, USFDA (inclusive of 12 CDER and CBER) Pharmaceutical Inspection Convention(PIC), Hrs WHO and EMEA covering: Organization and personnel responsibilities, training, hygiene and personal records, drug industry location, design, construction and plant lay out, maintenance, sanitation, environmental control, utilities and maintenance of sterile areas, control of contamination and Good Warehousing Practice.
- 3 Analysis of raw materials, finished products, packaging materials, 12 in process quality control (IPQC), Developing specification (ICH Hrs Q6 and Q3), purchase specifications and maintenance of stores for raw materials.

In process quality control and finished products quality control for following dosage forms in Pharma industry according to Indian, US and British pharmacopoeias: tablets, capsules, ointments, suppositories, creams, parenterals, ophthalmic and surgical products (How to refer pharmacopoeias).

4 Documentation in pharmaceutical industry: Three tier 12 documentation, Policy, Procedures and Work instructions, and Hrs records (Formats), Basic principles- How to maintain, retention and retrieval etc. Standard operating procedures (How to write), Master Batch Record, Batch Manufacturing Record, Quality audit plan and reports. Specification and test procedures, Protocols and reports. Distribution records. Electronic data handling. Concepts of controlled and uncontrolled documents.

Submission documents for regulators DMFs, as Common Technical Document and Electronic Common Technical

Documentation (CTD, eCTD). Concept of regulated and non

Manufacturing operations and controls: Sanitation of 12 manufacturing premises, mix-ups and cross contamination, processing of intermediates and bulk products, packaging operations, IPQC, release of finished product, process deviations, charge-in of components, time limitations on production, drug product inspection, expiry date calculation, calculation of yields, production record review, change control, sterile products, aseptic process control, packaging, reprocessing, salvaging, handling of

Introduction, scope and importance of intellectual property rights. Concept of trade mark, copyright and patents.

REFERENCES

regulated markets.

waste and scrap disposal.

- 1. Quality Assurance Guide by organization of Pharmaceutical Procedures of India, 3rd revised edition, Volume I & II, Mumbai, 1996.
- 2. Good Laboratory Practice Regulations, 2nd Edition, Sandy Weinberg Vol. 69, Marcel Dekker Series, 1995.
- 3. Quality Assurance of Pharmaceuticals- A compedium of Guide lines and Related materials Vol I & II, 2nd edition, WHO Publications, 1999.
- 4. How to Practice GMP's P P Sharma, Vandana Publications, Agra, 1991.

- 5. The International Pharmacopoeia vol I, II, III, IV & V General Methods of Analysis and Quality specification for Pharmaceutical Substances, Excepients and Dosage forms, 3rd edition, WHO, Geneva, 2005.
- 6. Good laboratory Practice Regulations Allen F. Hirsch, Volume 38, Marcel Dekker Series, 1989.
- 7. ICH guidelines
- 8. ISO 9000 and total quality management
- 9. The drugs and cosmetics act 1940 Deshpande, Nilesh Gandhi, 4th edition, Susmit Publishers, 2006.
- 10. QA Manual D.H. Shah, 1st edition, Business Horizons, 2000.
- 11. Good Manufacturing Practices for Pharmaceuticals a plan for total quality control Sidney H. Willig, Vol. 52, 3rd edition, Marcel Dekker Series.
- 12. Steinborn L. GMP/ISO Quality Audit Manual for Healthcare Manufacturers and Their Suppliers, Sixth Edition, (Volume 1 With Checklists and Software Package). Taylor & Francis; 2003.
- 13. Sarker DK. Quality Systems and Controls for Pharmaceuticals. John Wiley & Sons: 2008.
- 14. Packaging of Pharmaceuticals.
- 15. Schedule M and Schedule N.

PRODUCT DEVELOPMENT AND TECHNOLOGY TRANSFER (MQA 104T)

Scope

This deal with technology transfer covers the activities associated with Drug Substance, Drug Product and analytical tests and methods, required following candidate drug selection to completion of technology transfer from R&D to the first receiving site and technology transfer related to post-marketing changes in manufacturing places.

Objectives

Upon completion of this course the student should be able to

- To understand the new product development process
- To understand the necessary information to transfer technology from R&D to actual manufacturing by sorting out various information obtained during R&D
- To elucidate necessary information to transfer technology of existing products between various manufacturing places

- Principles of Drug discovery and development: Introduction, 12
 Clinical research process. Development and informational content
 for Investigational New Drugs Application (IND), New Drug
 Application (NDA), Abbreviated New Drug Application (ANDA),
 Supplemental New Drug Application (SNDA), Scale Up Post
 Approval Changes (SUPAC) and Bulk active chemical Post
 approval changes (BACPAC), Post marketing surveillance,
 Product registration guidelines CDSCO, USFDA.
- 2 Pre-formulation studies: Introduction/concept, organoleptic 12 properties, purity, impurity profiles, particle size, shape and Hrs surface area. Solubility, Methods to improve solubility of Drugs: Surfactants & its importance, co-solvency. Techniques for the study of Crystal properties and polymorphism. Pre-formulation protocol, Stability testing during product development.
- Pilot plant scale up: Concept, Significance, design, layout of 12 pilot plant scale up study, operations, large scale manufacturing Hrs techniques (formula, equipment, process, stability and quality control) of solids, liquids, semisolid and parenteral dosage forms. New era of drug products: opportunities and challenges.

- 4 Pharmaceutical packaging: Pharmaceutical dosage form and 12 their packaging requirments, Pharmaceutical packaging materials, Hrs Medical device packaging, Enteral Packaging, Aseptic packaging systems, Container closure systems, Issues facing modern drug packaging, Selection and evaluation of Pharmaceutical packaging materials.
 - Quality control test: Containers, closures and secondary packing materials.
- Technology transfer: Development of technology by R & D, 12
 Technology transfer from R & D to production, Optimization and Hrs
 Production, Qualitative and quantitative technology models.
 Documentation in technology transfer: Development report, technology transfer plan and Exhibit.

- 1. The process of new drug discovery and development. I and II Edition (2006) by Charles G. Smith, James T and O. Donnell. CRC Press, Group of Taylor and Francis.
- 2. Leon Lac Lachman, Herbert A. Liberman, Theory and Practice of Industrial Pharmacy. Marcel Dekker Inc. New York.
- 3. Sidney H Willing, Murray M, Tuckerman. Williams Hitchings IV, Good manufacturing of pharmaceuticals (A Plan for total quality control) 3rd Edition. Bhalani publishing house Mumbai.
- 4. Tablets Vol. I, II, III by Leon Lachman, Herbert A. Liberman, Joseph B. Schwartz, 2nd Edn. (1989) Marcel Dekker Inc. New York.
- 5. Text book of Bio- Pharmaceutics and clinical Pharmacokinetics by Milo Gibaldi, 3rd Edn, Lea & Febriger, Philadelphia.
- 6. Pharmaceutical product development. Vandana V. Patrevale. John I. Disouza. Maharukh T.Rustomji. CRC Press, Group of Taylor and Francis.
- 7. Dissolution, Bioavailability and Bio-Equivalence by Abdou H.M, Mack Publishing company, Eastern Pennsylvania.
- 8. Remingtons Pharmaceutical Sciences, by Alfonso & Gennaro, 19th Edn.(1995)OO2C Lippincott; Williams and Wilkins A Wolters Kluwer Company, Philadelphia.
- 9. The Pharmaceutical Sciences; the Pharma Path way 'Pure and applied Pharmacy' by D. A Sawant, Pragathi Books Pvt. Ltd.
- 10. Pharmaceutical Packaging technology by D.A. Dean. E.R. Evans, I.H. Hall. 1st Edition(Reprint 2006). Taylor and Francis. London and New York.

QUALITY ASSURANCE PRACTICAL - I (MQA 105P)

PRACTICALS

- Analysis of Pharmacopoeial compounds in bulk and in their formulations (tablet/ capsules/ semisolids) by UV Vis spectrophotometer
- 2. Simultaneous estimation of multi-drug component containing formulations by UV spectrophotometry
- 3. Experiments based on HPLC
- 4. Experiments based on Gas Chromatography
- 5. Estimation of riboflavin/quinine sulphate by fluorimetry
- 6. Estimation of sodium/potassium by flame photometry or AAS
- 7. Case studies on
 - Total Quality Management
 - Six Sigma
 - Change Management/ Change control. Deviations,
 - Out of Specifications (OOS)
 - Out of Trend (OOT)
 - Corrective & Preventive Actions (CAPA)
 - Deviations
- 8. Development of Stability study protocol
- 9. Estimation of process capability
- 10. In process and finished product quality control tests for tablets, capsules, parenterals and semisolid dosage forms.
- 11. Assay of raw materials as per official monographs
- 12. Testing of related and foreign substances in drugs and raw materials
- 13. To carry out pre formulation study for tablets, parenterals (2 experiment).
- 14. To study the effect of pH on the solubility of drugs, (1 experiment)
- 15. Quality control tests for Primary and secondary packaging materials
- 16. Accelerated stability studies (1 experiment)
- 17. Improved solubility of drugs using surfactant systems (1 experiment)
- 18. Improved solubility of drugs using co-solvency method (1 experiment)
- 19. Determination of Pka and Log p of drugs.

HAZARDS AND SAFETY MANAGEMENT (MQA 201T)

Scope

This course is designed to convey the knowledge necessary to understand issues related to different kinds of hazard and their management. Basic theoretical and practical discussions integrate the proficiency to handle the emergency situation in the pharmaceutical product development process and provides the principle based approach to solve the complex tribulations.

Objectives

At completion of this course it is expected that students will be able to

- Understand about environmental problems among learners.
- Impart basic knowledge about the environment and its allied problems.
- Develop an attitude of concern for the industry environment.
- Ensure safety standards in pharmaceutical industry
- Provide comprehensive knowledge on the safety management
- Empower an ideas to clear mechanism and management in different kinds of hazard management system
- Teach the method of Hazard assessment, procedure, methodology for provide safe industrial atmosphere.

- Multidisciplinary nature of environmental studies: Natural 12
 Resources, Renewable and non-renewable resources, Natural Hrs
 resources and associated problems,
 - a) Forest resources; b) Water resources; c) Mineral resources; d) Energy resources; e) Land resources
 Ecosystems: Concept of an ecosystem and Structure and function of an ecosystem.
 Environmental hazards: Hazards based on Air, Water, Soil and Radioisotopes.
- 2 Air based hazards: Sources, Types of Hazards, Air circulation 12 maintenance industry for sterile area and non sterile area, Hrs Preliminary Hazard Analysis (PHA) Fire protection system: Fire prevention, types of fire extinguishers and critical Hazard management system.
- 3 Chemical based hazards: Sources of chemical hazards, 12 Hazards of Organic synthesis, sulphonating hazard, Organic Hrs solvent hazard, Control measures for chemical hazards,

Management of combustible gases, Toxic gases and Oxygen displacing gases management, Regulations for chemical hazard, Management of over-Exposure to chemicals and TLV concept.

- 4 Fire and Explosion: Introduction, Industrial processes and 12 hazards potential, mechanical electrical, thermal and process hazards. Safety and hazards regulations, Fire protection system: Fire prevention, types of fire extinguishers and critical Hazard management system mechanical and chemical explosion, multiphase reactions, transport effects and global rates. Preventive and protective management from fires and explosion-electricity passivation, ventilation, and sprinkling, proofing, relief systems -relief valves, flares, scrubbers.
- Hazard and risk management: Self-protective measures against workplace hazards. Critical training for risk management, Process of hazard management, ICH guidelines on risk assessment and Risk management methods and Tools Factory act and rules, fundamentals of accident prevention, elements of safety programme and safety management, Physicochemical measurements of effluents, BOD, COD, Determination of some contaminants, Effluent treatment procedure. Role of emergency services.

- 1. Y.K. Sing, Environmental Science, New Age International Pvt, Publishers, Bangalore
- 2. "Quantitative Risk Assessment in Chemical Process Industries" American Institute of Chemical Industries, Centre for Chemical Process safety.
- 3. Bharucha Erach, The Biodiversity of India, Mapin Pu blishing Pvt. Ltd., Ahmedabad 380 013, India,
- 4. Hazardous Chemicals: Safety Management and Global Regulations, T.S.S. Dikshith, CRC press

PHARMACEUTICAL VALIDATION (MQA 202T)

Scope

The main purpose of the subject is to understand about validation and how it can be applied to industry and thus improve the quality of the products. The subject covers the complete information about validation, types, methodology and application.

Objectives

At completion of this course, it is expected that students will be able to understand

- The concepts of calibration, qualification and validation
- The qualification of various equipments and instruments
- Process validation of different dosage forms
- Validation of analytical method for estimation of drugs
- Cleaning validation of equipments employed in the manufacture of pharmaceuticals

THEORY 60 Hrs

- Introduction to validation: Definition of Calibration, Qualification 10 and Validation, Scope, frequency and importance. Difference Hrs between calibration and validation. Calibration of weights and measures. Advantages of Validation, scope of Validation, Organization for Validation, Validation Master plan, Types of Validation, Streamlining of qualification & Validation process and Validation Master Plan.
 - Qualification: User requirement specification, Design qualification, Factory Acceptance Test (FAT)/Site Acceptance Test (SAT), Installation qualification, Operational qualification, Performance qualification, Re-Qualification (Maintaining status-Calibration Preventive Maintenance, Change management).
- 2 Qualification of manufacturing equipment: Dry Powder 10 Mixers, Fluid Bed and Tray dryers, Tablet Compression Hrs (Machine), Dry heat sterilization/Tunnels, Autoclaves, Membrane filtration, Capsule filling machine.
 - Qualification of analytical instruments: UV-Visible spectrophotometer, FTIR, DSC, GC, HPLC, HPTLC, LC-MS.

- 3 Qualification of laboratory equipments: Hardness tester, 10 Friability test apparatus, tap density tester, Disintegration tester, Hrs Dissolution test apparatus
 Validation of Utility systems: Pharmaceutical water system & pure steam, HVAC system, Compressed air and nitrogen.
- 4 Process Validation: Concept, Process and documentation of 10 Process Validation. Prospective, Concurrent & Retrospective Hrs Validation, Re validation criteria, Process Validation of various formulations (Coated tablets, Capsules, Ointment/Creams, Liquid Orals and aerosols.), Aseptic filling: Media fill validation, USFDA guidelines on Process Validation- A life cycle approach. Analytical method validation: General principles, Validation of analytical method as per ICH guidelines and USP.
- 5 Cleaning Validation: Cleaning Method development, Validation 10 of analytical method used in cleaning, Cleaning of Equipment, Hrs Cleaning of Facilities. Cleaning in place (CIP). Validation of facilities in sterile and non-sterile plant. Computerized system validation: Electronic records and digital signature 21 CFR Part 11 and GAMP
- 6 General Principles of Intellectual Property: Concepts of Intellectual Property (IP), Intellectual Property Protection (IPP), Property Rights (IPR); Economic Intellectual importance. mechanism for protection of Intellectual Property -patents, Copyright, Trademark; Factors affecting choice of IP protection; Penalties for violation; Role of IP in pharmaceutical industry; Global ramification and financial implications. Filing a patent applications; patent application forms and guidelines. Types patent applications-provisional and non provisional, PCT and convention patent applications; International patenting requirement procedures and costs; Rights and responsibilities of a patentee: Practical aspects regarding maintaining of a Patent file; Patent infringement meaning and scope. Significance of transfer technology (TOT), IP and ethics-positive and negative aspects of IPP; Societal responsibility, avoiding unethical practices.

- 1. B. T. Loftus & R. A. Nash, "Pharmaceutical Process Validation", Drugs and Pharm Sci. Series, Vol. 129, 3rd Ed., Marcel Dekker Inc., N.Y.
- 2. The Theory & Practice of Industrial Pharmacy, 3rd edition, Leon Lachman, Herbert A. Lieberman, Joseph. L. Karig, Varghese Publishing House, Bombay.
- 3. Validation Master plan by Terveeks or Deeks, Davis Harwood International publishing.
- 4. Validation of Aseptic Pharmaceutical Processes, 2nd Edition, by Carleton & Agalloco,
- 5. (Marcel Dekker).
- 6. Michael Levin, Pharmaceutical Process Scale-Up", Drugs and Pharm. Sci. Series, Vol. 157,2nd Ed., Marcel Dekker Inc., N.Y.
- 7. Validation Standard Operating Procedures: A Step by Step Guide for Achieving Compliance in the Pharmaceutical, Medical Device, and Biotech Industries, Syed Imtiaz Haider
- 8. Pharmaceutical Equipment Validation: The Ultimate Qualification Handbook, Phillip A. Cloud, Interpharm Press
- 9. Validation of Pharmaceutical Processes: Sterile Products, Frederick J. Carlton (Ed.) and James Agalloco (Ed.), Marcel Dekker
- 10. Analytical Method validation and Instrument Performance Verification by Churg Chan, Heiman Lam, Y.C. Lee, Yue. Zhang, Wiley Interscience.
- 11. Huber L. Validation and Qualification in Analytical Laboratories. Informa Healthcare
- 12. Wingate G. Validating Corporate Computer Systems: Good IT Practice for Pharmaceutical Manufacturers. Interpharm Press
- 13. LeBlanc DA. Validated Cleaning Technologies for Pharmaceutical Manufacturing. Interpharm Press

AUDITS AND REGULATORY COMPLIANCE (MPA 203T)

Scope

This course deals with the understanding and process for auditing in pharmaceutical industries. This subject covers the methodology involved in the auditing process of different in pharmaceutical industries.

Objectives

Upon completion of this course the student should be able to

- To understand the importance of auditing
- To understand the methodology of auditing
- To carry out the audit process
- To prepare the auditing report
- To prepare the check list for auditing

THEORY 60 Hrs

- Introduction: Objectives, Management of audit, Responsibilities, 12
 Planning process, information gathering, administration, Hrs
 Classifications of deficiencies
- 2 Role of quality systems and audits in pharmaceutical 12 manufacturing environment: cGMP Regulations, Quality Hrs assurance functions, Quality systems approach, Management responsibilities, Resource, Manufacturing operations, Evaluation activities, Transitioning to quality system approach, Audit checklist for drug industries.
- Auditing of vendors and production department: Bulk 12 Pharmaceutical Chemicals and packaging material Vendor audit, Hrs Warehouse and weighing, Dry Production: Granulation, tableting, coating, capsules, sterile production and packaging.
- 4 Auditing of Microbiological laboratory: Auditing the 12 manufacturing process, Product and process information, General Hrs areas of interest in the building raw materials, Water, Packaging materials.

5 Auditing of Quality Assurance and engineering department: 12 Quality Assurance Maintenance, Critical systems: HVAC, Water, Hrs Water for Injection systems, ETP.

- 1. Compliance auditing for Pharmaceutical Manufacturers. Karen Ginsbury and Gil Bismuth, Interpharm/CRC, Boca Raton, London New York, Washington D.C.
- 2. Pharmaceutical Manufacturing Handbook, Regulations and Quality by Shayne Cox Gad. Wiley-Interscience, A John Wiley and sons, Inc., Publications.
- 3. Handbook of microbiological Quality control. Rosamund M. Baird, Norman A. Hodges, Stephen P. Denyar. CRC Press. 2000.
- 4. Laboratory auditing for quality and regulatory compliance. Donald C. Singer, Raluca-loana Stefan, Jacobus F. Van Staden. Taylor and Francis (2005).

PHARMACEUTICAL MANUFACTURING TECHNOLOGY (MQA 204T)

Scope

This course is designed to impart knowledge and skills necessary to train the students with the industrial activities during Pharmaceutical Manufacturing.

Objectives

At completion of this course it is expected that students will be able to understand,

- The common practice in the pharmaceutical industry developments, plant layout and production planning
- Will be familiar with the principles and practices of aseptic process technology, non sterile manufacturing technology and packaging technology.
- Have a better understanding of principles and implementation of Quality by design (QbD) and process analytical technology (PAT) in pharmaceutical manufacturing

THEORY 60 Hrs

 Pharmaceutical industry developments: Legal requirements 12 and Licenses for API and formulation industry, Plant location-Factors influencing.

Plant layout: Factors influencing, Special provisions, Storage space requirements, sterile and aseptic area layout.

Production planning: General principles, production systems, calculation of standard cost, process planning, routing, loading, scheduling, dispatching of records, production control.

2 Aseptic process technology: Manufacturing, manufacturing 12 flowcharts, in process-quality control tests for following sterile Hrs dosage forms: Ointment, Suspension and Emulsion, Dry powder, Solution (Small Volume & large Volume).

Advanced sterile product manufacturing technology: Area planning & environmental control, wall and floor treatment, fixtures and machineries, change rooms, personnel flow, utilities & utilities equipment location, engineering and maintenance.

Process Automation in Pharmaceutical Industry: With specific reference to manufacturing of sterile semisolids, Small Volume Parenterals & Large Volume Parenterals (SVP & LVP), Monitoring of Parenteral manufacturing facility, Cleaning in Place (CIP),

Sterilization in Place (SIP), Prefilled Syringe, Powdered Jet, Needle Free Injections, and Form Fill Seal Technology (FFS). Lyophilization technology: Principles, process, equipment.

3 Non sterile manufacturing process technology: Manufacturing, manufacturing flowcharts, in process-quality control tests for following Non-Sterile solid dosage forms: Tablets (compressed & coated), Capsules (Hard & Soft).

12 Hrs

Advance non-sterile solid product manufacturing technology: Process Automation in Pharmaceutical Industry with specific reference to manufacturing of tablets and coated products, Improved Tablet Production: Tablet production process, granulation and pelletization equipments, continuous and batch mixing, rapid mixing granulators, rota granulators, spheronizers and marumerisers, and other specialized granulation and drying equipments. Problems encountered.

Coating technology: Process, equipments, particle coating, fluidized bed coating, application techniques. Problems encountered.

4 Containers and closures for pharmaceuticals: Types, performance, assuring quality of glass; types of plastics used, Drug plastic interactions, biological tests, modification of plastics by drugs; different types of closures and closure liners; film wrapper; blister packs; bubble packs; shrink packaging; foil / plastic pouches, bottle seals, tape seals, breakable seals and sealed tubes; quality control of packaging material and filling equipment, flexible packaging, product package compatibility, transit worthiness of package, Stability aspects of packaging. Evaluation of stability of packaging material.

12 Hrs

Quality by design (QbD) and process analytical technology (PAT): Current approach and its limitations. Why QbD is required, Advantages, Elements of QbD, Terminology: QTPP. CMA, CQA, CPP, RLD, Design space, Design of Experiments, Risk Assessment and mitigation/minimization. Quality by Design, Formulations by Design, QbD for drug products, QbD for Drug Substances, QbD for Excipients, Analytical QbD. FDA initiative on process analytical technology. PAT as a driver for improving quality and reducing costs: quality by design (QbD), QA, QC and GAMP. PAT quidance, standards and regulatory requirements.

12 Hrs

- 1. Lachman L, Lieberman HA, Kanig JL. The theory and practice of industrial pharmacy, 3 ed., Varghese Publishers, Mumbai 1991.
- 2. Sinko PJ. Martin's physical pharmacy and pharmaceutical sciences, 5 ed., B.I. Publications Pvt. Ltd, Noida, 2006.
- 3. Lieberman HA, Lachman L, Schwartz JB. Pharmaceutical dosage forms: tablets Vol. I-III, 2 ed., CBS Publishers & distributors, New Delhi, 2005.
- 4. Banker GS, Rhodes CT. Modern Pharmaceutics, 4 ed., Marcel Dekker Inc, New York, 2005.
- 5. Sidney H Willing, Murray M, Tuckerman. Williams Hitchings IV, Good manufacturing of pharmaceuticals (A Plan for total quality control) 3rd Edition. Bhalani publishing house Mumbai.
- 6. Indian Pharmacopoeia. Controller of Publication. Delhi, 1996.
- 7. British Pharmacopoeia. British Pharmacopoeia Commission Office, London, 2008.
- 8. United States Pharmacopoeia. United States Pharmacopeial Convention, Inc, USA, 2003.
- 9. Dean D A, Evans E R and Hall I H. Pharmaceutical Packaging Technology. London, Taylor & Francis, 1st Edition. UK.
- 10. Edward J Bauer. Pharmaceutical Packaging Handbook. 2009. Informa Health care USA Inc. New york.
- 11. Shaybe Cox Gad. Pharmaceutical Manufacturing Handbook. John Willey and Sons, New Jersey, 2008.

QUALITY ASSURANCE PRACTICAL – II PRACTICALS (MQA 205P)

- 1. Organic contaminants residue analysis by HPLC
- 2. Estimation of Metallic contaminants by Flame photometer
- 3. Identification of antibiotic residue by TLC
- 4. Estimation of Hydrogen Sulphide in Air.
- 5. Estimation of Chlorine in Work Environment.
- 6. Sampling and analysis of SO₂ using Colorimetric method
- 7. Qualification of following Pharma equipment
 - a.Autoclave
 - b.Hot air oven
 - c. Powder Mixer (Dry)
 - d. Tablet Compression Machine
- 8. Validation of an analytical method for a drug
- 9. Validation of a processing area
- 10. Qualification of at least two analytical instruments
- 11. Cleaning validation of one equipment
- 12. Qualification of Pharmaceutical Testing Equipment (Dissolution testing apparatus, Friability Apparatus, Disintegration Tester)
- 13. Check list for Bulk Pharmaceutical Chemicals vendors
- 14. Check list for tableting production.
- 15. Check list for sterile production area
- 16. Check list for Water for injection.
- 17. Design of plant layout: Sterile and non-sterile
- 18. Case study on application of QbD
- 19. Case study on application of PAT

PHARMACEUTICALREGULATORY AFFAIRS(MRA)

GOOD REGULATORY PRACTICES (MRA 101T)

Scope

This course is designed to impart fundamental knowledge on various Good Regulatory Practices viz., cGMP, GLP, GALP and GDP for Pharmaceuticals, Cosmetics, Food & Nutraceuticals, Medical devices, In-vitro Diagnostic Medical Devices (IVDs) and biological products and understand the rationale behind these requirements and will propose ways and means of complying with them.

Objectives

At completion of this course it is expected that students will be able to understand,

- The key regulatory and compliance elements with respect to Good Manufacturing Practices, Good Laboratory Practices, Good Automated Laboratory Practices and Good Documentation Practices.
- Prepare and implement the check lists and SOPs for various Good Regulatory Practices
- Implement Good Regulatory Practices in the Healthcare and related Industries
- Prepare for the readiness and conduct of audits and inspections.

THEORY 60 Hrs

- Current Good Manufacturing Practices: Introduction, US cGMP 12 Part 210 and Part 211.EC Principles of GMP (Directive Hrs 91/356/EEC) Article 6 to Article 14 and WHO cGMP guidelines GAMP-5; Medical device and IVDs Global Harmonization Task Force(GHTF) Guidance docs.
- 2 Good Laboratory Practices: Introduction, USFDA GLP 12 Regulations (Subpart A to Subpart K), Controlling the GLP Hrs inspection process, Documentation, Audit, goals of Laboratory Quality Audit, Audit tools, Future of GLP regulations, relevant ISO and Quality Council of India(QCI) Standards
- 3 Good Automated Laboratory Practices: Introduction to GALP, 12 Principles of GALP, GALP Requirements, SOPs of GALP, Hrs Training Documentation,21 CFR Part 11, General check list of 21CFR Part 11, Software Evaluation checklist, relevant ISO and OCI Standards.

- 4 Good Distribution Practices: Introduction to GDP, Legal GDP 12 requirements put worldwide, Principles, Personnel, Hrs Documentation. Premises and Equipment, Deliveries Customers, Returns, Self-Inspection, Provision of information, Stability testing principles, WHO GDP, USP GDP (Supply chain integrity), relevant CDSCO guidance and ISO standards
- Quality management systems: Concept of Quality, Total Quality
 Management, Quality by design, Six Sigma concept, Out of
 Specifications (OOS), Change control. Validation: Types of
 Validation, Types of Qualification, Validation master plan (VMP),
 Analytical Method Validation. Validation of utilities, [Compressed
 air, steam, water systems, Heat Ventilation and Air conditioning
 (HVAC)]and Cleaning Validation. The International Conference on
 Harmonization (ICH) process, ICH guidelines to establish quality,
 safety and efficacy of drug substances and products, ISO 13485,
 Sch MIII and other relevant CDSCO regulatory guidance
 documents.

- 1. Good Laboratory Practice Regulations, by Sandy Weinberg, Fourth Edition Drugs and the Pharmaceutical Sciences, Vol.168
- 2. Good Pharmaceutical Manufacturing practice, Rational and compliance by John Sharp, CRC Press
- 3. Establishing a cGMP Laboratory Audit System, A practical Guide by David M.Bleisner, Wiley Publication.
- 4. How to practice GLP by PP Sharma, Vandana Publications.
- 5. Laboratory Auditing for Quality and Regulatory compliance bu Donald C.Singer, Drugs and the Pharmaceutical Sciences, Vol.150.
- 6. Drugs & Cosmetics Act, Rules & Amendments

DOCUMENTATION AND REGULATORY WRITING (MRA 102T)

Scope

This course is designed to impart fundamental knowledge on documentation and general principles involved in regulatory writing and submission to agencies.

Objectives

Upon completion of the course the student shall be able to,

- Know the various documents pertaining to drugs in pharmaceutical industry
- Understand the basics of regulatory compilation
- Create and assemble the regulation submission as per the requirements of agencies
- Follow up the submissions and post approval document requirements

THEORY 60 Hrs

- Documentation in pharmaceutical industry: Exploratory 12
 Product Development Brief (EPDB) for Drug substance and Drug
 product, Product Development Plan (PDP), Product Development
 Report (PDR), Master Formula Record, Batch Manufacturing
 Record and its calculations, Batch Reconciliation, Batch
 Packaging Records, Print pack specifications, Distribution
 records, Certificate of Analysis (CoA), Site Master File and Drug
 Master Files (DMF).
- 2 preparation and submission: Introduction and Dossier 12 overview of dossiers, contents and organization of dossier, Hrs binders and sections, compilation and review of dossier. Paper submissions, overview and modules of CTD, electronic CTD submission: Electronic Planning submission, requirements for submission, regulatory bindings and requirements. Tool and Technologies, electronic submission process and validating the submission, Electronic Submission Gateway (ESG). Non eCTD electronic submissions (NeeS), Asian CTD formats (ACTD) submission. Organizing, process and validation of submission. Submission in Sugam system of CDSCO.

- Audits: Introduction, Definition, Summary, Types of audits, GMP 12 compliance audit, Audit policy, Internal and External Audits, Hrs Second Party Audits, External third party audits, Auditing strategies, Preparation and conducting audit, Auditing strategies, audit analysis, audit report, audit follow up. Auditing/inspection of manufacturing facilities by regulatory agencies. Timelines for audits/inspection. GHTF study group 4 guidance document. ISO 13485.
- 4 Inspections: Pre-approval inspections, Inspection of 12 pharmaceutical manufacturers, Inspection of drug distribution Hrs channels, Quality systems requirements for national good manufacturing practice inspectorates, inspection report, model certificate of good manufacturing practices, Root cause analysis, Corrective and Preventive action (CAPA).
- Product life cycle management: Prior Approval Supplement 12 (PAS), Post Approval Changes [SUPAC], Changes Being Hrs Effected in 30 Days (CBE-30), Annual Report, Post marketing Reporting Requirements, Post approval Labeling Changes, Lifecycle Management, FDA Inspection and Enforcement, Establishment Inspection Report (EIR), Warning Letters, Recalls, Seizure and Injunctions. ISO Risk Management Standard

- 1. Compliance auditing for Pharmaceutical Manufacturers. Karen Ginsbury and Gil Bismuth, Interpharm/CRC, Boca Raton, London New York, Washington D.C.
- 2. Pharmaceutical Manufacturing Handbook, Regulations and Quality by Shayne Cox Gad. Wiley-Interscience, A John Wiley and sons, Inc., Publications.
- 3. Handbook of microbiological Quality control. Rosamund M. Baird, Norman A. Hodges, Stephen P. Denyar. CRC Press. 2000.
- 4. Laboratory auditing for quality and regulatory compliance. Donald C. Singer, Raluca-loana Stefan, Jacobus F. Van Staden. Taylor and Francis (2005).
- 5. Implementing Juran's Road Map for Quality Leadership: Benchmarks and Results, By Al Endres, Wiley, 2000
- 6. Understanding, Managing and Implementing Quality: Frameworks, Techniques and Cases, By Jiju Antony; David Preece, Routledge, 2002

- 7. Organizing for High Performance: Employee Involvement, TQM, Reengineering, and Knowledge Management in the Fortune 1000: The CEO Report By Edward E. Lawler; Susan Albers Mohrman; George Benson, Jossey-Bass, 2001
- 8. Corporate Culture and the Quality Organization By James W. Fairfield-Sonn, Quorum Books, 2001
- The Quality Management Sourcebook: An International Guide to Materials and Resources By Christine Avery; Diane Zabel, Routledge, 1997
- The Quality Toolbox, Second Edition, Nancy R. Tague, ASQ Publications
- 11. Juran's Quality Handbook, Sixth Edition, Joseph M. Juran and Joseph A. De Feo, ASQ Publications
- 12. Root Cause Analysis, The Core of Problem Solving and Corrective Action, Duke Okes, 2009, ASQ Publications
- 13. International Medical Device Regulators Forum (IMDRF) Medical Device Single Audit Program (MDSAP)

CLINICAL RESEARCH REGULATIONS (MRA 103T)

Scope

This course is designed to impart the fundamental knowledge on the clinical development process of drugs, pharmaceuticals and Medical Devices, phases and conduct of clinical trials and research, regulations and guidance governing the conduct of clinical research in India, USA and EU. It prepares the students to learn in detail on various laws, legislations and guidance related to safety, efficacy, ethical conduct and regulatory approval of clinical research.

Objectives

Upon completion of the course, the student shall be able to (know, do and appreciate)

- History, origin and ethics of clinical and biomedical research and evaluation
- Clinical drug, medical device development process and different types and phases of clinical trials
- Regulatory requirements and guidance for conduct of clinical trials and research

60 Hrs Theory 1. 12 Clinical Drug Development Process Hrs

- Different types of Clinical Studies
- Phases of clinical trials, Clinical Trial protocol

Phase 0 studies

- Phase I and subtype studies (single ascending, multiple ascending, dose escalation, methods, food effect studies, drug - drug interaction, PK end points
- Phase II studies (proof of concept or principle studies to establish efficacy)
- Phase III studies (Multi ethnicity, global clinical trial, registration studies)
- Phase IV studies (Post Marketing Studies; PSUR)

Clinical Investigation and Evaluation of Medical Devices & IVDs

Different Types of Studies Key Concepts of Medical Device Clinical Evaluation Key concepts of Clinical Investigation

2 Ethics in Clinical Research:

- 12
- Historical Perspectives: Nuremberg Code, Thalidomide study
 , Nazis Trials, Tuskegee Syphilis Study, The Belmont Report,
 The declaration of Helsinki
- Origin of International Conference on Harmonization Good Clinical Practice (ICH-GCP) guidelines.
- The ethics of randomized clinical trials
- The role of placebo in clinical trials
- Ethics of clinical research in special population
- Institutional Review Board/Independent Ethics Committee/Ethics Committee - composition, roles, responsibilities, review and approval process and ongoing monitoring of safety data
- Data safety monitoring boards.
- Responsibilities of sponsor, CRO, and investigator in ethical conduct of clinical research
 - Ethical principles governing informed consent process
 - Patient Information Sheet and Informed Consent Form
 - The informed consent process and documentation
- Regulations governing Clinical Trials
 India: Clinical Research regulations in India Schedule Y & Hrs
 Medical Device Guidance

USA: Regulations to conduct drug studies in USA (FDA)

- NDA 505(b)(1) of the FD&C Act (Application for approval of a new drug)
- NDA 505(b)(2) of the FD&C Act (Application for approval of a new drug that relies, at least in part, on data not developed by the applicant)
- ANDA 505(j) of the FD&C Act (Application for approval of a generic drug product)
- FDA Guidance for Industry Acceptance of Foreign Clinical Studies
- FDA Clinical Trials Guidance Document: Good Clinical Practice

EU: Clinical Research regulations in European Union (EMA)

- 4 Clinical Research Related Guidelines 12
 Good Clinical Practice Guidelines (ICH GCP E6) Hrs
 - Indian GCP Guidelines
 - ICMR Ethical Guidelines for Biomedical Research
 - CDSCO guidelines

GHTF study group 5 guidance documents

Regulatory Guidance on Efficacy and Safety ICH Guidance's

- E4 Dose Response Information to support Drug Registration
- E7 Studies in support of General Population: Geriatrics
- E8 General Considerations of Clinical Trials
- E10 Choice of Control Groups and Related Issues in Clinical Trials,
- E 11 Clinical Investigation of Medicinal Products in the Pediatric Population
- General biostatics principle applied in clinical research
- 5 USA & EU Guidance

12 Hrs

USA: FDA Guidance

- CFR 21Part 50: Protection of Human Subjects
- CFR 21Part 54: Financial Disclosure by Clinical Investigators
- CFR 21Part 312: IND Application
- CFR 21Part 314: Application for FDA Approval to Market a New Drug
- CFR 21Part 320: Bioavailability and bioequivalence requirements
- CFR 21Part 812: Investigational Device Exemptions
- CFR 21Part 822: Post-market surveillance
- FDA Safety Reporting Requirements for INDs and BA/BE Studies
- FDA Med Watch
- Guidance for Industry: Good Pharmacovigilance Practices and Pharmacoepidemiologic Assessment

European Union: EMA Guidance

- EU Directives 2001
- EudraLex (EMEA) Volume 3 Scientific guidelines for medicinal products for human use
- EU Annual Safety Report (ASR)
- Volume 9A Pharmacovigilance for Medicinal Products for Human Use
- EU MDD with respect to clinical research
- ISO 14155

- 1. Clinical Trials and Human Research: A Practical Guide to Regulatory Compliance By Fay A. Rozovsky and Rodney K. Adams
- 2. HIPAA and Human Subjects Research: A Question and Answer Reference Guide By Mark Barnes, JD, LLM and Jennifer Kulynych, JD, PhD
- 3. Principles and Practices of Clinical Research, Second Edition Edited by John I. Gallin and Frederick P. Ognibene
- 4. Reviewing Clinical Trials: A Guide for the Ethics Committee; Johan PE Karlberg and Marjorie A Speers; Karlberg, Johan Petter Einar, Hong Kong.
- 5. International Pharmaceutical Product Registration: Aspects of Quality, Safety and Efficacy; Anthony C. Cartwright; Taylor & Francis Inc., USA.
- 6. New Drug Approval Process: The Global Challenge; Guarino, Richard A; Marcel Dekker Inc., NY.
- 7. FDA regulatory affairs: a guide for prescription drugs, medical devices, and biologics; Douglas J. Pisano, David Mantus; CRC Press, USA
- 8. Country Specific Guidelines from official websites.
- 9. Drugs & Cosmetics Act & Rules and Amendments

RECOMMENDED WEBSITES:

- EU Clinical Research Directive 2001: http://www.eortc.be/services/doc/clinical-eudirective-04-april-01.pdf
- 2. Code of Federal Regulations, FDA: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm
- 3. Guidelines of International Conference on Harmonization: http://www.ich.org/products/guidelines.html
- 4. Eudralex Guidelines: http://www.gmpcompliance.info/euguide.htm
- 5. FDA New Drug Application:
- http://www.fda.gov/regulatoryinformation/legislation/FederalFoodDruga ndCosmetic ActFDCAct/FDCActChapterVDrugsandDevices/ucm108125.htm
- 7. Medicines and Healthcare products Regulatory Agency: http://www.mhra.gov.uk
- 8. Central Drugs Standard Control Organization Guidance for Industry: http://cdsco.nic.in/CDSCO-GuidanceForIndustry.pdf
- 9. ICMR Ethical Guidelines for Biomedical Research: http://icmr.nic.in/ethical_guidelines.pdf

REGULATIONS AND LEGISLATION FOR DRUGS & COSMETICS, MEDICAL DEVICES, BIOLOGICALS & HERBALS, AND FOOD & NUTRACEUTICALS IN INDIA AND INTELLECTUAL PROPERTY RIGHTS

(MRA 104T)

Scope

This course is designed to impart fundamental knowledge on regulations and legislation in India w.r.t. Drugs & Cosmetics, Medical Devices, Biologicals & Herbals, and Food & Nutraceuticals. It prepares the students for basic regulatory requirements in India of Drugs & Cosmetics, Medical Devices, Biologicals & Herbals, and Food & Nutraceuticals. for manufacture, import & registration, export, sale, marketing authorization, clinical trials and intellectual property rights.

Objectives

Upon the completion of the course the student shall be able to:

- Know different Acts and guidelines that regulate Drugs & Cosmetics, Medical Devices, Biologicals & Herbals, and Food & Nutraceuticals industry in India.
- Understand the approval process and regulatory requirements for Drugs & Cosmetics, Medical Devices, Biologicals & Herbals, and Food & Nutraceuticals

THEORY 60 Hrs

- Biologicals & Herbals, and Food & Nutraceuticals
 Acts and Rules (with latest amendments):
 Hrs
 - Drugs and Cosmetics Act 1940 and Rules 1945: DPCO and NPPA
 - Other relevant provisions (rules schedules and guidelines for approval of Drugs & Cosmetics, Medical Devices, Biologicals & Herbals, and Food & Nutraceuticals in India

Other relevant Acts: Narcotics Drugs and Psychotropic Substances Act; Medicinal and Toilet Preparations (Excise Duties) Act, 1955; Pharmacy Act, 1948; Drugs and Magic Remedies (Objectionable Advertisements) Act, 1955; Prevention of Cruelty to Animals Act.

Regulatory requirements and approval procedures for Drugs & Cosmetics Medical Devices, Biologicals & Herbals, and Hrs Food & Nutraceuticals

CDSCO (Central Drug Standard Control Organization) and State Licensing Authority: Organization, Responsibilities

- Rules, regulations, guidelines and standards for regulatory filing of Drugs & Cosmetics, Medical Devices, Biologicals & Herbals, and Food & Nutraceuticals
- Format and contents of Regulatory dossier filing Clinical trial/investigations
- 3 Indian Pharmacopoeial Standards, BIS standards and ISO and 12 other relevant standards Hrs
- 4 Bioavailability and Bioequivalence data (BA &BE), BCS 12
 Classification of Drugs, Regulatory Requirements for Hrs
 Bioequivalence study
 Stability requirements: ICH and WHO

Guidelines for Drug testing in animals/Preclinical Studies

Animal testing: Rationale for conducting studies, CPCSEA Guidelines
Ethical guidelines for human participants
ICMR-DBT Guidelines for Stem Cell Research

5 Intellectual Property Rights: Patent, Trademark, Copyright, 12 Industrial Designs and Geographical Indications, Indian Patent Hrs Scenario. IPR vs Regulatory Affairs

- Manual of Patent Practice & Procedure, 3rd Edition, by The Patent Office of India
- 2. Patent Failure How Judges, Bureaucrats, and Lawyers put innovators at risk by James Bessen and Michael J. Meurer
- 3. Principles and Practice of Clinical Trial Medicine by Richard Chin and Bruce Y. Lee
- 4. Ethical Guidelines for Biomedical Research on Human Participants by Indian Council of Medical Research New delhi 2006.
- 5. CPCSEA Guidelines for Laboratory Animal Facility by Committee for the purpose of control and supervision on experiments on animals (CPCSEA)

- 6. ICH E6 Guideline Good Clinical Practice \parallel by ICH Harmonised Tripartite 7. Guidance for Industry on Submission of Clinical Trial Application for Evaluating Safety and Efficacy by CDSCO (Central Drug Standard Control Organisation)
- 8. Guidance for Industry on Requirement of Chemical & Pharmaceutical Information including Stability Study Data before approval of clinical trials BE studies by CDSCO
- 9. Guidelines for Import and Manufacture of Medical Devices by CDSCO
- 10. Guidelines from official website of CDSCO

REGULATORY AFFAIRS PRACTICAL - I

(MRA 105P)

- 1. Case studies (4 Nos.) of each of Good Pharmaceutical Practices.
- Documentation for in process and finished products Quality control tests for Solid, liquid, Semisolid and Sterile preparations.
- 3. Preparation of SOPs, Analytical reports (Stability and validation)
- Protocol preparation for documentation of various types of records (BMR, MFR, DR)
- 5. Labeling comparison between brand & generics.
- 6. Preparation of clinical trial protocol for registering trial in India
- 7. Registration for conducting BA/BE studies in India
- 8. Import of drugs for research and developmental activities
- Preparation of regulatory dossier as per Indian CTD format and submission in SUGAM
- 10. Registering for different Intellectual Property Rights in India
- 11. GMP Audit Requirements as per CDSCO
- 12. Preparation and documentation for Indian Patent application.
- 13. Preparation of checklist for registration of IND as per ICH CTD format.
- 14. Preparation of checklist for registration of NDA as per ICH CTD format.
- 15. Preparation of checklist for registration of ANDA as per ICH CTD format.
- 16. Case studies on response with scientific rationale to USFDA Warning Letter
- 17. Preparation of submission checklist of IMPD for EU submission.
- 18. Comparison study of marketing authorization procedures in EU.
- 19. Comparative study of DMF system in US, EU and Japan
- 20. Preparation of regulatory submission using eCTD software
- 21. Preparation of Clinical Trial Application (CTA) for US submission
- 22. Preparation of Clinical Trial Application (CTA) for EU submission
- 23. Comparison of Clinical Trial Application requirements of US, EU and Japan of a dosage form.
- 24. Regulatory requirements checklist for conducting clinical trials in India.
- 25. Regulatory requirements checklist for conducting clinical trials in Europe.
- 26. Regulatory requirements checklist for conducting clinical trials in USA

SEMESTER II REGULATORY ASPECTS OF DRUGS & COSMETICS (MRA 201T)

Scope

This course is designed to impart the fundamental knowledge on the drug development process, regulatory requirements for approval of new drugs, drug products and cosmetics in regulated and semi-regulated countriesIt prepares the students to learn in detail on the regulatory requirements, documentation requirements, and registration procedures for marketing the drug products and cosmetics in regulated and semi-regulated countries.

Objectives

Upon completion of the course, the student shall be able to know

- process of drug discovery and development and generic product development
- regulatory approval process and registration procedures for API and drug products in US, EU
- Cosmetics regulations in regulated and semi-regulated countries
- A comparative study of India with other global regulated markets

Theory 60 Hrs

- USA & CANADA: Organization structure and functions of FDA. 1. 12 Federal register and Code of Federal Regulations (CFR), History Hrs and evolution of United States Federal, Food, Drug and Cosmetic Act (FFDCA), Hatch Waxman act and Orange book, Purple book, Drug Master Files (DMF) system in US, Regulatory Approval Process for Investigational New Drug (IND), New Drug Application (NDA), Abbreviated New Drug Application (ANDA), Supplemental New Drug Application (SNDA); Regulatory requirements for Orphan drugs and Combination Products, Changes to an approved NDA / ANDA. Regulatory considerations for manufacturing, packaging and labeling of pharmaceuticals in Legislation and regulations for import, manufacture, USA. distribution and sale of cosmetics in USA and Canada.
- European Union & Australia: Organization and structure of EMA 12
 & EDQM, General guidelines, Active Substance Master Files Hrs
 (ASMF) system in EU, Content and approval process of IMPD, Marketing Authorization procedures in EU (Centralized procedure,

Decentralized procedure, Mutual recognition procedure and National Procedure). Regulatory considerations for manufacturing, packaging and labeling of pharmaceuticals in EU, Eudralex directives for human medicines, Variations & extensions, Compliance of European Pharmacopoeia (CEP)/ Certificate of Suitability (CoS), Marketing Authorization (MA) transfers, Qualified Person (QP) in EU. Legislation and regulations for import, manufacture, distribution and sale of cosmetics in European Union & Australia.

12

Hrs

12

Hrs

- Japan: Organization of the PMDA, Pharmaceutical Laws and regulations, types of registration applications, DMF system in Japan, drug regulatory approval process, Regulatory considerations for manufacturing, packaging and labeling of pharmaceuticals in Japan, Post marketing surveillance in Japan. Legislation and regulations for import, manufacture, distribution and sale of cosmetics in Japan
- 4 Emerging Market: Introduction, Countries covered, Study of the world map, study of various committees across the globe (ASEAN, Hrs APEC, EAC, GCC, PANDRH, SADC)
 WHO: WHO, GMP, Regulatory Requirements for registration of drugs and post approval requirements in WHO through prequalification programme, Certificate of Pharmaceutical Product (CoPP) General and Country Specific (South Africa, Egypt, Algeria and Morocco, Nigeria, Kenya and Botswana)
- Brazil, ASEAN, CIS and GCC Countries:
 ASIAN Countries: Introduction to ACTD, Regulatory
 Requirements for registration of drugs and post approval
 requirements in China and South Korea & Association of
 Southeast Asian Nations (ASEAN) Region i.e. Vietnam, Malaysia,
 Philippines, Singapore and Thailand.
 CIS (Commonwealth Independent States): Regulatory prerequisites related to Marketing authorization requirements for

CIS (Commonwealth Independent States): Regulatory prerequisites related to Marketing authorization requirements for drugs and post approval requirements in CIS countries i.e. Russia, Kazakhstan and Ukraine GCC (Gulf Cooperation Council) for Arab states: Regulatory pre-requisites related to Marketing authorization requirements for drugs and post approval requirements in Saudi Arabia and UAE

Legislation and regulations for import, manufacture, distribution and sale of cosmetics in Brazil, ASEAN, CIS and GCC Countries.

- Generic Drug Product Development, Solid Oral Dosage forms, Leon Shargel and Isader Kaufer, Marcel Dekker series, Vol.143
- The Pharmaceutical Regulatory Process, Edited by Ira R. Berry Marcel Dekker Series, Vol.144
- 3. The Pharmaceutical Regulatory Process, Second Edition Edited by Ira R. Berry and Robert P. Martin, Drugs and the Pharmaceutical Sciences, Vol.185 Informa Health care Publishers.
- 4. New Drug Approval Process: Accelerating Global Registrations By Richard A Guarino, MD, 5th edition, Drugs and the Pharmaceutical Sciences, Vol.190.
- 5. Guidebook for drug regulatory submissions / Sandy Weinberg. By John Wiley & Sons. Inc.
- 6. Drugs: From Discovery to Approval, Second Edition By Rick Ng
- 7. New Drug Development: A Regulatory Overview, Eighth Edition By Mark Mathieu
- 8. Pharmaceutical Risk Management By Jeffrey E. Fetterman, Wayne L. Pines and Gary H. Slatko
- Preparation and Maintenance of the IND Application in eCTD Format By William K. Sietsema
- 10. Country Specific Guidelines from official websites.
- 11. http://www.who.int/medicines/areas/quality_safety/regulation_legislation/ListMRAWebsites.pdf
- 12. Roadmap to an ASEAN economic community Edited by Denis Hew. ISEAS Publications, Singapore 2005, ISBN 981-230-347-2
- 13. ASEAN, Rodolfo C. Severino, ISEAS Publications, Singapore 2005, ISBN 978-981-230-750-7
- 14. Building a Future with Brics: The Next Decade for Offshoring, Mark Kobayashi-Hillary, Springer
- 15. Outsourcing to India: The Offshore Advantage, Mark Kobayashi-Hillary, Springer Trade performance and Regional Integration of the CIS Countries, Lev Freinkman,
- 16. The world Bank, Washington, DC, ISBN: 0-8212-5896-0
- 17. Global Pharmaceutical Policy: Ensuring Medicines for Tomorrow's World ByFrederick M. Abbott, Graham Dukes, Maurice Nelson Graham Dukes 139
- 18. The Gulf Cooperation Council: A Rising Power and Lessons for ASEAN by Linda Low and Lorraine Carlos Salazar (Nov 22, 2010)
- 19. Doing Business in the Asean Countries, Balbir Bhasin, Business Expert Press ISBN:13:978-1-60649-108-9
- 20. Realizing the ASEAN Economic Community: A Comprehensive Assessment, Michael G Plummer (Editor), Chia Siow Yue (Editor), Instute of South east asian studies, Singapore

REGULATORY ASPECTS OF HERBAL AND BIOLOGICALS (MRA 202T)

Scope

This course is designed to impart fundamental knowledge on Regulatory Requirements, Licensing and Registration, Regulation on Labelling of Biologics in India, USA and Europe

It prepares the students to learn in detail on Regulatory Requirements for biologics, Vaccines and Blood Products

Objectives

Upon the completion of the course the student shall be able to :

- Know the regulatory Requirements for Biologics and Vaccines
- Understand the regulation for newly developed biologics and biosimilars
- Know the pre-clinical and clinical development considerations of biologics
- Understand the Regulatory Requirements of Blood and/or Its Components Including Blood Products and label requirements

Theory 60 Hrs

- India: Introduction, Applicable Regulations and Guidelines, 12
 Principles for Development of Similar Biologics, Data Hrs Requirements for Preclinical Studies, Data Requirements for Clinical Trial Application, Data Requirements for Market Authorization Application, Post-Market Data for Similar Biologics, Pharmacovigilance. GMP and GDP.
- 2 USA: Introduction to Biologics; biologics, biological and 12 biosimilars, different biological products, difference between Hrs generic drug and biosimilars, laws, regulations and guidance on biologics/ biosimilars, development and approval of biologics and biosimilars (IND, PMA, BLA, NDA, 510(k), pre-clinical and clinical development considerations, advertising, labelling and packing of biologics
- 3 European Union: Introduction to Biologics; directives, scientific 12 guidelines and guidance related to biologics in EU, comparability/ HI biosimilarity assessment, Plasma master file, TSE/ BSE evaluation, development and regulatory approval of biologics (Investigational medicinal products and biosimilars), pre-clinical

and clinical development considerations; stability, safety, advertising, labelling and packing of biologics in EU

- 4 Vaccine regulations in India, US and European Union: Clinical evaluation, Marketing authorisation, Registration or licensing, Quality assessment, Pharmacovigilance, Additional requirements Blood and Blood Products Regulations in India, US and European Union: Regulatory Requirements of Blood and/or Its Components Including Blood Products, Label Requirements, ISBT (International Society of Blood Transfusion) and IHN (International Haemovigilence Network)
- 5 Herbal Products: Quality, safety and legislation for herbal 12 products in India, USA and European Union.

- 1. FDA Regulatory Affairs: A Guide for Prescription Drugs, Medical Devices, and Biologics, Douglas J. Pisano, David S. Mantus; Informa, 2008
- 2. Biological Drug Products: Development and Strategies; Wei Wang, Manmohan Singh; wiley, 2013
- 3. Development of Vaccines: From Discovery to Clinical Testing; Manmohan Singh , Indresh K. Srivastava ;Wiley, 2011
- 4. www.who.int/biologicals/en
- www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/
- 6. www.ihn-org.com
- 7. www.isbtweb.org
- 8. Guidelines on Similar Biologics: Regulatory Requirements for Marketing Authorization in India
- 9. www.cdsco.nic.in
- 10. www.ema.europa.eu > scientific guidelines > Biologicals
- 11. www.fda.gov/biologicsbloodVaccines/GuidanceCompliance Regulatory Information (Biologics)

REGULATORY ASPECTS OF MEDICAL DEVICES (MRA 203T)

Scope

This course is designed to impart the fundamental knowledge on the medical devices and in vitro diagnostics, basis of classification and product life cycle of medical devices, regulatory requirements for approval of medical devices in regulated countries like US, EU and Asian countries along with WHO regulations. It prepares the students to learn in detail on the harmonization initiatives, quality and ethical considerations, regulatory and documentation requirements for marketing medical devices and IVDs in regulated countries.

Objectives

Upon completion of the course, the student shall be able to know

- basics of medical devices and IVDs, process of development, ethical and quality considerations
- harmonization initiatives for approval and marketing of medical devices and IVDs
- regulatory approval process for medical devices and IVDs in India, US, Canada, EU, Japan and ASEAN
- · clinical evaluation and investigation of medical devices and IVDs

Theory 60 Hrs

- Medical Devices: Introduction, Definition, Risk based 12 classification and Essential Principles of Medical Devices and IVDs. Differentiating medical devices IVDs and Combination Products from that of pharmaceuticals, History of Medical Device Regulation, Product Lifecycle of Medical Devices and Classification of Medical Devices.
 IMDRF/GHTF: Introduction, Organizational Structure, Purpose and Functions, Regulatory Guidelines, Working Groups, Summary Technical Document (STED), Global Medical Device Nomenclature (GMDN).
- Ethics: Clinical Investigation of Medical Devices, Clinical 12 Investigation Plan for Medical Devices, Good Clinical Practice for Hrs Clinical Investigation of medical devices (ISO 14155:2011) Quality: Quality System Regulations of Medical Devices: ISO 13485, Quality Risk Management of Medical Devices: ISO 14971, Validation and Verification of Medical device, Adverse Event Reporting of Medical device

- 3 USA: Introduction, Classification, Regulatory approval process for Medical Devices (510k) Premarket Notification, Pre-Market Hrs Approval (PMA), Investigational Device Exemption (IDE) and In vitro Diagnostics, Quality System Requirements 21 CFR Part 820, Labeling requirements 21 CFR Part 801, Post marketing surveillance of MD and Unique Device Identification (UDI). Basics of In vitro diagnostics, classification and approval process.
- 4 European Union: Introduction, Classification, Regulatory 12 approval process for Medical Devices Hrs (Medical Device Directive, Active Implantable Medical Device Directive) and In vitro Diagnostics (In Vitro Diagnostics Directive), CE certification process.

 Basics of In vitro diagnostics, classification and approval process.
- 5 ASEAN, China & Japan: Medical Devices and IVDs, Regulatory 12 registration procedures, Quality System requirements and clinical Hrs evaluation and investigation.

 IMDRF study groups and guidance documents.

- 1. FDA regulatory affairs: a guide for prescription drugs, medical devices, and biologics by Douglas J. Pisano, David Mantus.
- Medical Device Development: A Regulatory Overview by Jonathan S. Kahan
- 3. Medical Product Regulatory Affairs: Pharmaceuticals, Diagnostics, Medical Devices by John J. Tobin and Gary Walsh
- 4. Compliance Handbook for Pharmaceuticals, Medical Devices and Biologics by Carmen Medina
- 5. Country Specific Guidelines from official websites.

REGULATORY ASPECTS OF FOOD & NUTRACEUTICALS (MRA 204T)

Scope

This course is designed to impart the fundamental knowledge on Regulatory Requirements, Registration and Labeling Regulations of Nutraceuticals in India, USA and Europe.

It prepares the students to learn in detail on Regulatory Aspects for nutraceuticals and food supplements.

Objectives

Upon completion of the course, the student shall be able to

- Know the regulatory Requirements for nutraceuticals
- Understand the regulation for registration and labeling of nutraceuticals and food supplements in India, USA and Europe.

Theory 60 Hrs

- Nutraceuticals: Introduction, History of Food and Nutraceutical 12
 Regulations, Meaning of Nutraceuticals, Dietary Supplements, Hrs
 Functional Foods, Medical Foods, Scope and Opportunities in
 Nutraceutical Market.
- 2 Global Aspects: WHO guidelines on nutrition. NSF International: 12 Its Role in the Dietary Supplements and Nutraceuticals Industries, Hrs NSF Certification, NSF Standards for Food And Dietary Supplements. Good Manufacturing Practices for Nutraceuticals.
- 3 India: Food Safety and Standards Act, Food Safety and 12 Standards Authority of India: Organization and Functions, Hrs Regulations for import, manufacture and sale of nutraceutical products in India, Recommended Dietary Allowances (RDA) in India
- 4 USA: US FDA Food Safety Modernization Act, Dietary 12 Supplement Health and Education Act. U.S. regulations for Hrs manufacture and sale of nutraceuticals and dietary supplements, Labelling Requirements and Label Claims for Dietary Supplements, Recommended Dietary Allowances (RDA) in the U.S

5 European Union: European Food Safety Authority (EFSA): 12
Organization and Functions. EU Directives and regulations for Hrs
manufacture and sale of nutraceuticals and dietary supplements.
Nutrition labelling. European Regulation on Novel Foods and
Novel Food Ingredients. Recommended Dietary Allowances
(RDA) in Europe.

- 1. Regulation of Functional Foods and Nutraceuticals: A Global Perspective by Clare M. Hasler (Wiley Online Library)
- 2. Nutraceutical and Functional Food Regulations in the United States and Around the World by Debasis Bagchi (Academic Press, Elsevier)
- 3. http://www.who.int/publications/guidelines/nutrition/en/
- http://www.europarl.europa.eu/RegData/etudes/STUD/2015/536324/IPOL_ STU(2015)536324_EN.pdf
- 5. Handbook of Nutraceuticals by Yashwant Pathak (CRC Press)
- 6. Food Regulation: Law, Science, Policy and Practice by Neal D. Fortin (Wiley)
- 7. Country Specific Guidelines from official websites.

REGULATORY AFFAIRS PRACTICAL - II (MRA 205P)

- 1. Case studies on
- 2. Change Management/ Change control. Deviations
- 3. Corrective & Preventive Actions (CAPA)
- 4. Documentation of raw materials analysis as per official monographs
- 5. Preparation of audit checklist for various agencies
- 6. Preparation of submission to FDA using eCTD software
- 7. Preparation of submission to EMA using eCTD software
- 8. Preparation of submission to MHRA using eCTD software
- 9. Preparation of Biologics License Applications (BLA)
- 10. Preparation of documents required for Vaccine Product Approval
- 11. Comparison of clinical trial application requirements of US, EU and India of Biologics
- 12. Preparation of Checklist for Registration of Blood and Blood Products
- 13. Registration requirement comparison study in 5 emerging markets (WHO) and preparing check list for market authorization
- 14. Registration requirement comparison study in emerging markets (BRICS) and preparing check list for market authorization
- 15. Registration requirement comparison study in emerging markets (China and South Korea) and preparing check list for market authorization
- 16. Registration requirement comparison study in emerging markets (ASEAN) and preparing check list for market authorization
- 17. Registration requirement comparison study in emerging markets (GCC) and preparing check list for market authorization
- 18. Checklists for 510k and PMA for US market
- 19. Checklist for CE marking for various classes of devices for EU
- 20. STED Application for Class III Devices
- 21. Audit Checklist for Medical Device Facility
- 22. Clinical Investigation Plan for Medical Devices

PHARMACEUTICALBIOTECHNOLOGY(MPB)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MPB 101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives

After completion of course student is able to know,

- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 Hrs

- a. UV-Visible spectroscopy: Introduction, Theory, Laws, 12
 Instrumentation associated with UV-Visible spectroscopy, Choice of solvents and solvent effect and Applications of UV-Visible spectroscopy.
 - IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy
 - b. Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
 - c. Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.
- 2 NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

- 3 Mass Spectroscopy: Principle, Theory, Instrumentation of Mass 12 Spectroscopy, Different types of ionization like electron impact, Hrs chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy
- 4 Chromatography: Principle, apparatus, instrumentation, 12 chromatographic parameters, factors affecting resolution and Hrs applications of the following:
 - a) Paper chromatography b) Thin Layer chromatography
 - c) Ion exchange chromatography d) Column chromatography
 - e) Gas chromatography f) High Performance Liquid chromatography
 - g) Affinity chromatography
- 5 a. Electrophoresis: Principle, Instrumentation, Working 12 conditions, factors affecting separation and applications of the Hrs following:
 - a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso electric focusing
 - b. X ray Crystallography: Production of X rays, Different X ray methods, Bragg's law, Rotating crystal technique, X ray powder diffration technique, Types of crystals and applications of X-ray diffraction.

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore.
- 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi.
- 7. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11, Marcel Dekker Series

MICROBIAL AND CELLULAR BIOLOGY (MPB 102T)

Scope

This subject is designed to provide the advanced knowledge to the biotechnology students in invaluable areas of advanced microbiology which plays a crucial role in determining its future use and applications in medicine, drug discovery and in pharmaceutical industry.

Objective

At the completion of this course it is expected that the students will get an understanding about the following aspects;

- Importance of Microorganisms in Industry
- Central dogma of molecular biology
- Structure and function of cell and cell communication
- Cell culture technology and its applications in pharmaceutical industries.
- Microbial pathogenesis and correlating it to rational use of antimicrobial agents.

THEORY 60Hrs

- Microbiology

 Introduction Prokaryotes and Eukaryotes. Bacteria, fungi, actionomycetes and virus structure, chemistry and morphology, cultural, physiological and reproductive features. Methods of isolation, cultivation and maintenance of pure cultures. Industrially important microorganisms examples and applications
- 2 Molecular Biology: Structure of nucleus and chromosome, 12 Nucleic acids and composition, structure and types of DNA and Hrs RNA. Central dogma of molecular biology: Replication, Transcription and translation.

Gene regulation

Gene copy number, transcriptional control and translational control.

RNA processing

Modification and Maturation, RNA splicing, RNA editing, RNA amplification. Mutagenesis and repair mechanisms, types of mutants, application of mutagenesis in stain improvement, gene mapping of plasmids- types purification and application. Phage genetics, geneticorganization, phage mutation and lysogeny.

3 Cell structure and function Cell organelles, cytoskeleton & cell movements, basic aspectsof cell regulation, bioenergetics and fuelling reactions of aerobics and anaerobics, secondary metabolism & its applications. Cell communication, cell cycle and apoptosis, mechanism of cell division. Celljunctions/adhesion and extra cellular matrix, germ

12

Hrs

12

Hrs

Cell Cycle and Cytoskeleton

tissues.

Cell Division and its Regulation, G-Protein CoupledReceptors, Kinases, Nuclear receptors, Cytoskeleton & cell movements, IntermediateFilaments.

cells and fertilization, histology - thelife and death of cells in

Apoptosis and Oncogenes

Programmed Cell Death, Tumor cells, carcinogens & repair.

Differentiation and Developmental Biology
Fertilization, Events of Fertilization, In vitro Fertilization,
Embryonic Germ Cells, Stem Cells and its Application.

4 Principles of microbial nutrition 12
Physical and chemical environment for microbial growth, Stability Hrs and degeneration of microbial cultures.

Growth of animal cells in culture

General procedure for cell culture, Nutrient composition, Primary, established and transformed cell cultures, applications of cell cultures in pharmaceutical industry and research. Growth of viruses in cell culture propagation and enumeration. In-vitro screening techniques- cytotoxicity, anti-tumor, anti-viral assays.

Microbial pathology Identifying the features of pathogenic bacteria, fungi and viruses. Mechanism of microbial pathogenicity, etiology and pathology of common microbial diseases and currently recommended therapies for common bacterial, fungal & viral infections. Mechanism of action of antimicrobial agents and possible sites of chemotherapy.

- 1. W.B. Hugo and A.D. Russel: Pharmaceutical Microbiology, Blackwell Scientific publications, Oxford London.
- 2. Prescott and Dunn, Industrial Microbiology, CBS Publishers & Distributors, Delhi.
- 3. Pelczar, Chan Kreig, Microbiology, Tata McGraw Hill edn.
- 4. David Freifelder, Molecular Biology, 2nd edition, Narosa Publishing House.
- 5. R. Ian Freshney, Culture of animal cells A manual of Basic techniques, 6th edition, Wileys publication house.
- 6. David Baltimore, Molecular cell biology, W H Freeman & Co publishers.
- 7. Cell biology vol-I,II,III by Julio E.Cells
- 8. Bergeys manual of systematic bacteriology, Williams and Wilkins- A Waverly company.

BIOPROCESS ENGINEERING AND TECHNOLOGY (MPB 103T)

Scope

This paper has been designed to provide the knowledge to the biotechnology students in invaluable areas of bioprocess technology to develop skills to modify, design and operate different types of fermenters, to understand and implement various fermentation procedures, to train students in scale up fermentation operations.

Objective

At the completion of this subject it is expected that students will be able to,

- Understand basics and design of fermentation technology
- Scale up and scale down processing of fermentation technology
- Bioprocessing of the industrially important microbial metabolites in industries and R & D organizations.
- Regulation governing the manufacturing of biological products
- Understand and conduct fermentation process kinetics.

THEORY 60 Hrs
Introduction to fermentation technology 12

Hrs

Introduction to fermentation technology
 Basic principles of fermentation

Study of the design and operation of bioreactor Ancillary parts and function, impeller design and agitation, power requirements on measurements and control of dissolved oxygen, carbon dioxide, temperature, pH and foam.

Types of bioreactor

CSTR, tower, airlift, bubble column, packed glass bead, hollow fiber, configuration and application

Computer control of fermentation process

System configuration and application

2 Mass transfer 12
Theory, diffusional resistance to oxygen requirements of Hrs microorganisms, measurements of mass transfer co- efficient and

factor affecting them, effects of aeration and agitation on mass transfer, supply of air, air compressing, cleaning and sterilization of air and plenum ventilation, air sampling and testing standards for air purity.

Rheology

Rheological properties of fermentation system and their importance in bioprocessing.

3 Scale up of fermentation process
Principles, theoretical considerations, techniques used, media for fermentation, HTST sterilization, advantage and disadvantage, liquid sterilization.

Cultivation and immobilized culture system

Cultivation system - batch culture, continuous culture, synchronous cultures, fed batch culture. Graphical plot representing the above systems.

Introduction to immobilization

Techniques, immobilization of whole cell, immobilized culture system to prepare fine chemicals. Immobilization of enzymes and their applications in the industry. Reactors for immobilized systems and perspective of enzyme engineering.

4 Scale down of fermentation process
Theory, equipment design and operation, methods of filtration, solvent extraction, chromatographic separation, crystallization turbidity analysis and cell yield determination, metabolic response assay, enzymatic assay, bioautographic techniques and disruption of cells for product recovery.

Isolation and screening

Primary and secondary, maintenance of stockculture, strain improvement for increased yield.

- 5 Bioprocessing of the industrially important microbial metabolites
 - 12 Hrs

12

Hrs

- a) Organic solvents Alcohol and Glycerol
- b) Organic acids Citric acids, Lactic acids,
- Amino acids Glutamic acids, Lysine, Cyclic AMP and GMP
- d) Antibiotics Penicillin, Streptomycin, Griseofulvin,
- e) Vitamins B12, Riboflavin and Vitamin C

Biosynthetic pathways for some secondary metabolites, microbial transformation of steroids and alkaloids

Regulation governing the manufacturing of biological products .

- 1. Peter Stanbury, Allan Whitaker, Stephen Hall, Principles of Fermentation technology, Elsevier stores.
- 2. L.E. Casida, Industrial Microbiology, John Wiley & sons Inc.
- 3. F.M. Asubel, Current protocols in molecular biology, volume I and II, John Wiley Publishers.
- 4. Biotol Board, Bioreactor design and product yield, Butterworth and Helhemann Publishers.
- 5. H. Patel, Industrial microbiology, Macmillan India Limited.

ADVANCED PHARMACEUTICAL BIOTECHNOLOGY (MPB 104T)

Scope

This paper has been designed to provide the knowledge to the students to develop skills of advanced techniques of isolation and purification of enzymes, to enrich students with current status of development of vaccines and economic importance of biotechnology products.

Objective

At the completion of this subject it is expected that students will be able to

- Understand about the latest technology development in biotechnology technique, tools and their uses in drug and vaccine development.
- Identify appropriate sources of enzymes.
- Understand and perform genetic engineering techniques in gene manipulation, r-DNA technology and gene amplification.
- Understand the overview of pharmacogenomics.
- Learn the regulatory approval process and key regulatory agencies for new drugs, biologics, devices, and drug-device combinations.

THEORY 60 Hrs

- 1. Enzyme Technology 12 Classification, general properties of enzymes, dynamics of Hrs enzymatic activity, sources of enzymes, extraction and purification, pharmaceutical, therapeutic and clinical application. Production of amyloglucosidase, glucose isomerase, amylase and trypsin.
- 2 Genetic Engineering 12
 Techniques of gene manipulation, cloning strategies, procedures, cloning vectors expression vectors, recombinant selection and screening, expression in E.coli and yeast.

Site directed mutagenesis, polymerase chain reaction, and analysis of DNAsequences.

Gene library and cDNA

Applications of the above technique in the production of,

Regulatory proteins - Interferon, Interleukins
 Blood products - Erythropoietin
 Vaccines - Hepatitis-B
 Hormones - Insulin

3 Therapeutic peptides

12 Hrs

Study on controlled and site specified delivery of therapeutic peptides and proteins through various routes of administration.

Transgenic animals

Production of useful proteins in transgenic animals and gene therapy.

Human Genome

The human genome project-a brief study, Human chromosome – Structure and classification, chromosomal abnormalities – Syndromes

4 Signal transduction

12 Hrs

Introduction, cell signaling pathways, Ion channels, Sensors and effectors, ON and OFF mechanisms, Spatial and temporal aspects of signaling, cellular process, development, cell cycle and proliferation, neuronal signaling, cell stress, inflammatory responses and cell death, signaling defects and diseases.

Oncogenes

Introduction, definition, various oncogenes and their proteins.

5 Microbial Biotransformation

12

Biotransformation for the synthesis of chiral drugs and steroids. Microbial Biodegradation

Hrs

Biodegradation of xenobiotics, chemical and industrial wastes, Production of single-cell protein.

Applications of microbes in environmental monitoring.

Biosensors

Definition, characteristics of ideal biosensors, types of biosensors, biological recognition elements, transducers, application of biosensors.

- 1. Biotechnology-The biological principles: MD Trevan, S Boffey, KH Goulding and P.F. Stanbury.
- Immobilization of cells and enzymes: HosevearKennadycabral& Bicker staff
- 3. Principles of Gene Manipulating: RW Old and S.B.Primrose.
- 4. Molecular Cell Biology: Harvey Lodish, David Baltimore, Arnold Berk, S LawenceZipursky, Paul Matsudaira, James Darnell.
- 5. Modern Biotechnology: S.B Primrose

- 6. Gene transfer and expression protocols-methods in Molecular Biology, vol. VII, Edit E.T. Murray
- 7. Current protocols in Molecular Biology, Vo1.I & II:F.M. Asubel, John wiley Publishers
- 8. Current protocols in cellular biology, Vol.1 & II John wiley publishers.
- 9. Principles of human genetics; by Curt Stern, published by W.H. Freeman.

PHARMACEUTICAL BIOTECHNOLOGY PRACTICAL - I (MPB 105P)

- 1. Analysis of Pharmacopoeial compounds and their formulations by UV Vis spectrophotometer
- 2. Simultaneous estimation of multi component containing formulations by UV spectrophotometry
- 3. Experiments based on HPLC
- 4. Experiments based on Gas Chromatography
- 5. Estimation of riboflavin/quinine sulphate by fluorimetry
- 6. Estimation of sodium/potassium by flame photometry
- 7. Isolation and Purification of microorganism from the soil
- 8. Microbial contamination of Water and biochemical parameters.
- 9. Determination of Minimum Inhibitory concentration by gradient plate technique and serial dilution method.
- 10. UV- survival curve and Dark repair
- 11. Sterility test for pharmaceutical preparations
- 12. Sub culturing of cells and cytotoxicity assays.
- 13. Construction of growth curve and determination of specific growth rate and doubling time
- 14. Fermentation process of alcohol and wine production
- 15. Fermentation of vitamins and antibiotics
- 16. Whole cell immobilization engineering
- 17. Thermal death kinetics of bacteria
- 18. Replica plating
- 19. Bio-autography.
- 20. Isolation and estimation of DNA
- 21. Isolation and estimation of RNA
- 22. Isolation of plasmids
- 23. Agarose gel electrophoresis.
- 24. Transformation techniques
- 25. SDS polyacrylamide gel electrophoresis for proteins
- 26. Polymerase chain reaction technique.

PROTEINS AND PROTEIN FORMULATIONS (MPB 201T)

Scope

This course is designed to impart knowledge and skills necessary for knowing fundamental aspects of proteins and their formulations is a part of drug research and development process. Basic theoretical discussions of the principles of more integrated and coherent use of information for protein formulation and design are provided to help the students to clarify the various biological concepts of protein.

Objective

At the completion of this course it is expected that students will be able to understand,

- Various methods of purification of proteins
- Peptides in drug development
- Protein identification and characterization
- Protein based formulations
- Sequencing proteins

THEORY 60 Hrs

- Protein engineering
 Concepts for protein engineering. Isolation and purification of proteins, Stability and activity based approaches of protein engineering, Chemical and Physical Considerations in Protein and Peptide Stability, Different methods for protein engineering, gene shuffling, and direct evolution.
- Peptidomimetics 12
 Introduction, classification; Conformationally restricted peptides, Hrs design, pseudopeptides, peptidomimetics and transition state analogs; Biologically active template; Amino acid replacements; Peptidomimetics and rational drug design; CADD techniques in peptidomimetics; Development of non peptide peptidomimetics.
- Proteomics 12
 Protein identification and characterization: Methods/strategies, Protein identification, de novo protein characterization, Isotope labelling, N- and C-terminal tags.

- 2-Dimensional gel electrophoresis Methods including immobilized pH gradients (IPGs), resolution, reproducibility and image analysis, future developments
- 4 Protein formulation 12
 Different strategies used in the formulation of DNA and proteins, Analytical and biophysical parameters of proteins and DNA in preformulation, Liposomes, Neon-spears, Neon-particulate system, PEGylation, Biological Activity, Biophysical Characterization Techniques, Forced degradation studies of protein.
- Methods of protein sequencing 12
 Various methods of protein sequencing, characterisation, Edman Hrs degradation, Tryptic and/or Chymotryptic Peptide Mapping.

- 1. H. Lodhishet. Al. Molecular Cell Biology, W. H. Freeman and Company
- 2. Protein Purification Hand Book, Amersham pharmacia biotech
- 3. EngelbertBuxbaum, Fundamentals of Protein Structure and Function, Springer Science
- 4. Sheldon J. Park, Jennifer R. Cochran, Protein Engineering and Design, CRC press.
- 5. Robert K. Skopes. Protein purification, principle and practice, springer link.
- 6. David Whitford. Proteins-Structure and Function. John Wiley & Sons Ltd.
- 7. James Swarbrick, Protein Formulation and Delivery Informa Healthcare USA,Inc.
- 8. Rodney Pearlman, Y. John Wang Formulation, Characterization, and Stability of Protein Drugs, Kluwer Academic Publishers.

IMMUNOTECHNOLOGY (MPB 202T)

Scope

This course is designed to impart knowledge on production and engineering of antibodies, the application of antigens, the design of (recombinant) vaccines, strategies for immune intervention, etc. The Immunotechnology - based techniques will be used for therapeutics and diagnostics, industries in the production, quality control and quality assurance, and in R&D.

Objective

After this course, the students will be able to:-

- Understand the techniques like immunodiagnostic tests,
- Characterization of lymphocytes, purification of antigens and antibody, etc.
- Access health problems with immunological background;
- Develop approaches for the immune intervention of diseases

THEORY 60 Hrs

Fundamental aspects of immunology Introduction, cells and organs of the immune system, cellular Hrs basis of Immune response, primary and secondary lymphoid organs, antigen antibody and their structure.

Types of immune responses, anatomy of immune response.

Overview of innate and adaptive Immunity.

Humoral Immunity

B - Lymphocytes and their activation. Structure and function of immunoglobulins, idiotypes and anti-idiotypic antibodies.

Cell mediated Immunity

Thymus derived lymphocytes (T cells) – their ontogeny and types, MHC complex, antigen presenting cells (APC), mechanisms of T cell activation, macrophages, dendritic cells, langerhans cells, mechanism of phagocytosis

Immune Regulation and Tolerance
 Complement activation and types and their biological functions,
 Cytokines and their role in immune response.

Hypersensitivity

Hypersensitivity Types I-IV, Hypersensitivity reactions and treatment

Autoimmune diseases

3 Vaccine technology 12 Vaccine and their types, conventional vaccines, novel methods for Hrs vaccine production, antiidiotype vaccine, DNA vaccine, genetically vaccine. engineered iscoms. synthetic peptides. and immunodiagnostics. Stem cell technology Stem cell technology and applications to immunology

4 Hybridoma Technology Hybridoma techniques - fusion methods for myeloma cells and B-Hrs Lymphocytes, selection and screening techniques. Production and purification of monoclonal antibodies and their applications in Pharmaceutical industry.

12

5 Immunological Disorder 12 Autoimmune disorders and types, pathogenic mechanisms, Hrs treatment, experimental models of auto immune diseases, primary and secondary immunodeficiency disorders. Immunodiagnosis

Antigen antibody interaction - Precipitation reaction, Agglutination reactions, Principles and applications of ELISA, Radio Immuno Assay, Western blot analysis, immune-electrophoresis, immuno fluorescence, chemiluminescence assay, complement fixation reaction.

- 1. J. Kubey, Immunology an Introduction.
- 2. S.C. Rastogi, Immunodiagonstics, New Age International.
- 3. Ashim Chakravarthy. Immunology and Immunotechnology. Oxford University Press.
- 4. E. Benjamini, Molecular Immunology.

BIOINFORMATICS AND COMPUTATIONAL BIOTECHNOLOGY (MPB 203T)

Scope

This paper has been designed to provide the advanced knowledge to the biotechnology students in invaluable areas of advanced bioinformatics which plays a crucial role in determining its future use and applications in medicine, drug discovery and in pharmaceutical industry.

Objectives

Upon completion of this course it is expected that the students will be able to understand,

- Use of computers in developing a new drugs
- Biological concepts for bioinformatics
- Proteins and their diversity
- Various gene finding methods
- Searching the biological databases
- Target searching
- Various methods of drug designing

THEORY

1. Introduction to Bioinformatics
Definition and History of Bioinformatics, Internet and Hrs
Bioinformatics, Introduction to Data Mining, Applications of Data
Mining to Bioinformatics,

Biological Database

Protein and nucleic acid databases. Structural data bases. Collecting and storing the sequence and Applications of Bioinformatics.

- 2 Sequence analysis
 Sequence alignment, pair wise alignment techniques, multiple
 Sequence analysis, multiple sequence alignment; Flexible
 Sequence similarity searching with the FAST3 program package,
 the use of CLUSTAL W and CLUSTAL X for the multiple
 Sequence alignment. Tools used for sequence analysis.
- 3 Protein informatics 12
 Introduction; Force field methods; Energy, buried and exposed Hrs residues, side chains and neighbours; Fixed regions, hydrogen bonds, mapping properties onto surfaces; Fitting monomers, R &

S fit of conformers, assigning secondary structures; Sequence alignment-methods, evaluation, scoring; Protein completion, backbone construction and side chain addition; Small peptide methodology, software accessibility, building peptides; Protein displays; Substructure manipulations, annealing.

Protein structure prediction

Protein folding and model generation; Secondary structure secondary structures; Protein loop prediction. analyzing searching, loop generating methods, loop analysis; Homology modeling, concepts of homology modeling, potential applications, description, methodology, homologous sequence identification; Align structures, align model sequence; Construction of variable and conserved regions, threading techniques. Topology fingerprint approach for prediction, evaluation of alternate models; Structure prediction on a mystery sequence, structure aided sequence techniques of structure prediction, structural profiles, alignment algorithms, mutation tables, prediction, validation, sequence based methods of structure prediction, prediction using inverse folding, fold prediction: Significance analysis, scoring techniques, sequence- sequence scoring.

Docking

Docking problems, methods for protein-ligand docking, validation studies and applications; Screening small molecule databases, docking of combinatorial libraries, input data, analyzing docking results.

4 Diversity of Genomes

12 Hrs

Prokaryotic and Eukaryotic Gene Families. Genome Analysis: Introduction, Gene prediction methods, Gene mapping and applications- Genetic and Physical Mapping, Integrated map, Sequence assembly and gene expression.

Completed Genomes

Bacterium, Nematode, Plant and Human

Evolution of Genomes

Lateral or Horizontal Transfer among Genomes, Transcriptome and Proteome-General Account

Phylogenetic analysis

Evolutionary Change in Nucleotide Sequences, Rates and Patterns of Nucleotide Substitution, Models for Nucleotide Substitution, Construction of Phylogenetic Tree, Genome Annotation technique.

Target searching and Drug Designing
Target and lead, timeline for drug development, target discovery, target modulators, In-silico gene expression, microarray, and lead discovery, libraries of ligands, active site analysis, and prediction of drug quality.

- David W. Mount, Bioinformatics Sequence and Genome Analysis, CBS Publishers and Distributors
- 2. S. C. Rastogiet. al. Bioinformatics- Concepts Skill and Applications, CBS Publishers and Distributors
- 3. T. E. Creighton, Protein Structure and Molecular Properties, W. H.Freeman and Company
- 4. Andreas D. Baxevanis, B. F. Francis Ouellette, Bioinformatics; A Practical Guide to the Analysis of Genes and Proteins, John Wiley & Sons, Inc.
- 5. Arthur M. Lesk, Introduction to Bioinformatics, Oxford University Press.
- 6. Shui Qing Ye. Bioinformatics: A Practical Approach, Chapman & Hall/CRC.
- 7. David Posada, Bioinformatics for DNA Sequence Analysis, Humana press.
- 8. Lesk, A.M. Introduction to Bioinformatics. Oxford University Press.
- 9. Letovsky, S.I. Bioinformatics. Kluwer Academic Publishers.
- 10. Baldi, P. and Brunak, S. Bioinformatics. The MIT Press.

BIOLOGICAL EVALUATION OF DRUG THERAPY (MPB 204T)

Scope

This paper has been designed to provide the knowledge to the biotechnology students to understand the importance of biological and evaluation of drug therapy of biological medicines.

Objective

At the completion of this subject it is expected that students will be able to.

- Understand about the general concept of standardization of biological.
- Understand the importance of transgenic animals and knockout animals.
- Understand the biological medicines in development of various diseases.
- Learn the biological evaluation of drugs in vitro and in vivo

THEORY 60 Hrs

Biological Standardization
 General principles, Scope and limitation of bio-assay, bioassay of Hrs

Preclinical drug evaluation

some official drugs.

Preclinical drug evaluation of its biological activity, potency and toxicity-Toxicity test in animals including acute, sub-acute and chronic toxicity, ED50 and LD50 determination, special toxicity test like teratogenecity and mutagenecity.

Guidelines for toxicity studies

Various guidelines for toxicity studies. Animal experiments assessing safety of packaging materials.

2 Pyrogens 12

Pyrogens: Sources, Chemistry and properties of bacterial Hrs pyrogens and endotoxins, Official pyrogen tests.

Microbiological assay

Assay of antibiotics and vitamins.

Biological evaluation of drugs

Screening and evaluation (including principles of screening, development of models for diseases: In vivo models / In vitro models / cell line study).

- 3 Biologic Medicines in Development for various diseases -12 By Therapeutic Category Hrs Genetic Disorders Eve related Disorders Digestive Disorders Diabetes/Related Conditions Cardiovascular Disease Cancer/Related Conditions Blood Disorders Autoimmune Disorders Infectious Diseases **Neurologic Disorders** Skin Diseases Organe Transplantation Biologic Medicines in Development for various diseases – by Product Category Antisense Vaccines Recombinant Hormones/Proteins Monoclonal Antibodies (mAb) Interferons **Growth Factors** Gene Therapy RNA Interference 4 Regulatory aspects: drugs, biologics and medical devices 12 An introduction to the regulations and documents necessary for Hrs approval of a medical product. Regulatory consideration Regulatory consideration for pre-clinical testing and clinical testing of drugs, biologics and medical devices.
- 5 Bioavailability
 Objectives and consideration in bio-availability studies of Hrs
 Biopharmaceuticals, Concept of equivalents, Measurements of
 bio-availability.

New Drug Applications for Global Pharmaceutical Product

Approvals

Determination of the rate of absorption, Bioequivalence and its importance, Regulatory aspects of bio-availability and bioequivalence studies for conventional dosage forms and controlled drug delivery systems of Biopharmaceuticals. Pharmacokinetics

Pharmacokinetics:- Basic consideration, Pharmacokinetic models, Application of Pharmacokinetics in new drug development of Biopharmaceuticals and designing of dosage forms and Novel drug delivery systems of Biopharmaceuticals.

- Perkins F.T., Hennessen W. Standardization and Control of Biologicals Produced by Recombinant DNA Technology, International Association of Biological Standardization
- 2. J.H. Burn., Biological Standardization, Oxford University Press
- 3. Drug Discovery and Evaluation in Pharmacology assay: Vogel
- 4. Chow, Shein, Ching, Design and analysis of animal studies in pharmaceutical development,
- 5. Nodine and Siegler, Animal and Clinical pharmacologic Techniques in Drug Evaluation.
- 6. Screening methods in pharmacology (vol I & II), R.A. Turner.

PHARMACEUTICAL BIOTECHNOLOGY PRACTICAL - II (MPB 205P)

- Protein identification
- 2. Protein characterization
- 3. Protein biochemistry
- 4. Recombinant DNA Technology
- 5. Protein expression
- 6. Protein formulations
- 7. Database searching
- 8. Sequence analysis methods
- 9. Protein structure prediction
- 10. Gene annotation methods
- 11. Phylogenetic analysis
- 12. Protein, DNA binding studies
- 13. Preparation of DNA for PCR applications Isolation, Purity and Quantification
- 14. Introduction to PCR working of PCR, Programming.
- 15. Introduction to RT-PCR working, programming.
- 16. Primer design using softwares.
- 17. Gene DNA amplification by random / specific primers.
- 18. Southern Hybridization
- 19. Western Blotting
- 20. Gene transformation

PHARMACYPRACTICE(MPP)

CLINICAL PHARMACY PRACTICE (MPP 101T)

Scope

This course is designed to impart the basic knowledge and skills that are required to practice pharmacy including the provision of pharmaceutical care services to both healthcare professionals and patients in clinical settings.

Objectives

Upon completion of this course it is expected that students shall be able to :

- Understand the elements of pharmaceutical care and provide comprehensive patient care services
- Interpret the laboratory results to aid the clinical diagnosis of various disorders
- Provide integrated, critically analyzed medicine and poison information to enable healthcare professionals in the efficient patient management

THEORY 60 Hrs

- Introduction to Clinical Pharmacy: Definition, evolution and 12 scope of clinical pharmacy, International and national scenario of Hrs clinical pharmacy practice, Pharmaceutical care
 Clinical Pharmacy Services: Ward round participation, Drug therapy review (Drug therapy monitoring including medication order review, chart endorsement, clinical review and pharmacist interventions)
- 2 Clinical Pharmacy Services: Patient medication history 12 interview, Basic concept of medicine and poison information Hrs services, Basic concept of pharmacovigilance, Hemovigilance, Materiovigilance and AEFI, Patient medication counselling, Drug utilisation evaluation, Documentation of clinical pharmacy services, Quality assurance of clinical pharmacy services.
- Patient Data Analysis:
 Patient Data & Practice Skills: Patient's case history its Hrs structure and significances in drug therapy management, Common medical abbreviations and terminologies used in clinical practice, Communication skills: verbal and non-verbal communications, its applications in patient care services.

Lab Data Interpretation: Hematological tests, Renal function tests, Liver function tests

- 4 Lab Data Interpretation: Tests associated with cardiac 12 disorders, Pulmonary function tests, Thyroid function tests, Fluid Hrs and electrolyte balance, Microbiological culture sensitivity tests
- Medicines & Poison Information Services
 Medicine Information Service: Definition and need for medicine
 Information service, Medicine information resources, Systematic
 approach in answering medicine information queries, Preparation
 of verbal and written response, Establishing a drug information
 centre.

Poison Information Service: Definition, need, organization and functions of poison information centre.

- 1. A Textbook of Clinical Pharmacy Practice Essential concepts and skills Parthasarathi G, Karin Nyfort-Hansen and Milap Nahata
- 2. Practice Standards and Definitions The Society of Hospital Pharmacists of Australia
- 3. Basic skills in interpreting laboratory data Scott LT, American Society of Health System Pharmacists Inc
- 4. Relevant review articles from recent medical and pharmaceutical literature.

PHARMACOTHERAPEUTICS-I (MPP 102T)

Scope

This course aims to enable the students to understand the different treatment approaches in managing various disease conditions. Also, it imparts knowledge and skills in optimizing drug therapy of a patient by individualizing the treatment plan through evidence-based medicines.

Objectives

Upon completion of this course it is expected that students shall be able to:

- Describe and explain the rationale for drug therapy
- Summarize the therapeutic approach for management of various disease conditions including reference to the latest available evidence
- Discuss the clinical controversies in drug therapy and evidence based medicine
- Prepare individualized therapeutic plans based on diagnosis
- Identify the patient specific parameters relevant in initiating drug therapy, and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effect/s)

THEORY 60 Hrs Etiopathogenesis and pharmacotherapy of diseases associated with following systems 1. Cardiovascular system: Hypertension, Congestive cardiac 12 failure, Acute coronary syndrome, Arrhythmias, Hyperlipidemias. Hrs 2 Respiratory system: Asthma, Chronic obstructive airways 12 disease, Drug induced pulmonary diseases Hrs Endocrine system: Diabetes, Thyroid diseases

- 3 Gastrointestinal system: Peptic ulcer diseases, Reflux 12 esophagitis, Inflammatory bowel diseases, Jaundice & hepatitis Hrs
- 4 Gastrointestinal system: Cirrhosis, Diarrhea and Constipation, 12 Drug-induced liver disease Hrs

Hematological diseases: Anemia, Deep vein thrombosis, Drug induced hematological disorders

Bone and joint disorders: Rheumatoid arthritis, Osteoarthritis,
 Gout, Osteoporosis
 Hrs

Dermatological Diseases: Psoriasis, Eczema and scabies, impetigo, drug induced skin disorders

Ophthalmology: Conjunctivitis, Glaucoma

- 1. Roger and Walker. Clinical Pharmacy and Therapeutics Churchill Livingstone publication
- Joseph T. Dipiro et al. Pharmacotherapy: A Pathophysiologic Approach-Appleton & Lange
- 3. Robins SL. Pathologic basis of disease -W.B. Saunders publication
- 4. Eric T. Herfindal. Clinical Pharmacy and Therapeutics- Williams and Wilkins Publication
- 5. Lloyd Young and Koda-Kimble MA Applied Therapeutics: The clinical Use of Drugs- Lippincott Williams and Wilkins
- 6. Chisholm- Burns Wells Schwinghammer Malone and Joseph P Dipiro. Pharmacotherapy Principles and practice-- McGraw Hill Publication
- 7. Carol Mattson Porth. Principles of Pathophysiology- Lippincott Williams and Wilkins
- 8. Harrison's. Principles of Internal Medicine McGraw Hill
- 9. Relevant review articles from recent medical and pharmaceutical literature

HOSPITAL & COMMUNITY PHARMACY (MPP 103T)

Scope

This course is designed to impart basic knowledge and skills that are required to practice pharmacy in both hospital and community settings.

Objectives

Upon completion of this course it is expected that students shall be able to:

- Understand the organizational structure of hospital pharmacy
- · Understand drug policy and drug committees
- Know about procurement & drug distribution practices
- Know the admixtures of radiopharmaceuticals
- Understand the community pharmacy management
- Know about value added services in community pharmacies

THEORY 60 Hrs

- Introduction to Hospitals Definition, classification, 12 organizational structure
 - Hospital Pharmacy: Definition, Relationship of hospital pharmacy department with other departments, Organizational structure, legal requirements, work load statistics, Infrastructural requirements, Hospital Pharmacy Budget and Hospital Pharmacy management
 - Hospital Drug Policy: Pharmacy & Therapeutics Committee, Infection Control committee, Research & Ethics Committee, Management of Medicines as per NABH
- 2 Hospital Formulary Guidelines and its development, Developing 12 Therapeutic guidelines, Drug procurement process, and methods of Inventory control, Methods of Drug distribution, Intravenous admixtures, Hospital Waste Management
- 3 Education and training: Training of technical staff, training and 12 continuing education for pharmacists, Pharmacy students, Hrs Medical staff and students, Nursing staff and students, Formal and informal meetings and lectures, Drug and therapeutics newsletter.
 - Community Pharmacy Practice: Definition, roles & responsibilities of community pharmacists, and their relationship with other health care providers.

Community Pharmacy management: Legal requirements to start community pharmacy, site selection, lay out & design, drug display, super drug store model, accounts and audits. Good dispensing practices. Different softwares & databases used in community pharmacies. Entrepreneurship in community pharmacy.

4 Prescription - Legal requirements & interpretation, prescription 12 related problems Hrs

Responding to symptoms of minor ailments: Head ache, pyrexia, menstrual pains, food and drug allergy.

OTC medication: Rational use of over the counter medications Medication counseling and use of patient information leaflets Medication adherence - Definition, factors influencing adherence behavior, strategies to improve medication adherence Patient referrals to the doctors

ADR monitoring in community pharmacies

5 Health Promotion - Definition and health promotion activities. family planning, Health screening services, first aid, prevention of Hrs communicable and non-communicable diseases. cessation. Child & mother care

National Health Programs- Role of Community Pharmacist in Malaria and TB control programs

Home Medicines review program - Definition, objectives, Guidelines, method and outcomes

Research in community pharmacy Practice

- 1. Hospital Pharmacy Hassan WE. Lea and Febiger publication.
- 2. Textbook of hospital pharmacy Allwood MC and Blackwell.
- 3. Avery's Drug Treatment, Adis International Limited.
- 4. Community Pharmacy Practice Ramesh Adepu, BSP Publishers, Hvderabad
- 5. Remington Pharmaceutical Sciences.
- 6. Relevant review articles from recent medical and pharmaceutical literature

CLINICAL RESEARCH (MPP 104T)

Scope

This course aims to provide the students an opportunity to learn drug development process especially the phases of clinical trials and also the ethical issues involved in the conduct of clinical research. Also, it aims to imparts knowledge and develop skills on conceptualizing, designing, conducting and managing clinical trials.

Objectives

Upon completion of this course it is expected that students shall be able to:

- Know the new drug development process.
- Understand the regulatory and ethical requirements.
- Appreciate and conduct the clinical trials activities
- Know safety monitoring and reporting in clinical trials
- Manage the trial coordination process

THEORY 60 Hrs

12 Hrs

- Drug development process: Introduction, various approaches to drug discovery, Investigational new drug application submission Ethics in Biomedical Research: Ethical Issues in Biomedical Research - Principles of ethics in biomedical research, Ethical committee [institutional review board] - its constitution and functions, Challenges in implementation of ethical guidelines, ICH GCP guidelines and ICMR guidelines in conduct of Clinical trials, Drug Safety Reporting.
- 2 Types and Designs used in Clinical Research: Planning and 12 Hrs execution of clinical trials, Various Phases of clinical trials, Bioavailability and Bioequivalence studies. Randomization techniques (Simple randomization, restricted randomization, blocking method and stratification), Types of research designs based on Controlling Method (Experimental, Quasi experimental, and Observational methods) Time Sequences (Prospective and Retrospective), Sampling methods (Cohort study, case Control study and cross sectional study), Health outcome measures (Clinical & Physiological, Humanistic and economic) Clinical Trial Study team: Roles and responsibilities of: Investigator, Study Coordinator, Sponsor, Monitor, Contract Research Organization.

3 Clinical trial Documents: Guidelines to the preparation of following documents: Protocols, Investigator's Brochure, Informed Hrs Consent Form, Case report forms, Contracts and agreements, Dairy Cards

Clinical Trial Start up activities: Site Feasibility Studies, Site/Investigator selection, Pre-study visit, Investigator meeting, Clinical trial agreement execution, Ethics committee document preparation and submission

4 Procurement and Storage of Investigational Product: investigation product

12 Hrs

Filing procedures: Essential documents for clinical trial. Trial Master File preparation and maintenance, Investigator Site File, Pharmacy File. Site initiation visit. Conduct. Report and Follow up Clinical Trial Monitoring and Close out:

Preparation and conduct of monitoring visit: Review of source documents. CRF. ICF. IΡ storage, accountability reconciliation, Study Procedure, EC communications, Safety reporting, Monitoring visit reporting and follow-up Close-Out visit: Study related documents collection, Archival

requirement, Investigational Product reconciliation and destruction, Close-Out visit report.

5 Quality Assurance and Quality Control in Clinical Trials: Types of audits, Audit criteria, Audit process, Responsibilities of Hrs stakeholders in audit process, Audit follow-up and documentation, Audit resolution and Preparing for FDA inspections, Fraud and misconduct management

12

Data Management

Infrastructure and System Requirement Management: Electronic data capture systems, Selection and implementation of new systems, System validation and test procedures, Coding dictionaries, Data migration and archival

Trial Data Management: Standard Procedures, Data management plan, CRF & Data base design considerations, Study set-up, Data entry, CRF tracking and corrections, Data cleaning, Managing laboratory and ADR data, Data transfer and database lock, Quality Control and Quality Assurance in CDM. Data mining and warehousing.

- Principles and practice of pharmaceutical medicine, Second edition. Authors:Lionel. D. Edward, Aadrew.J.Flether Anthony W Fos, Peter D Sloaier Publisher:Wiley;
- 2. Handbook of clinical research. Julia Lloyd and Ann Raven Ed. Churchill Livingstone
- 3. Principles of Clinical Research edited by Giovanna di Ignazio, Di Giovanna and Haynes.
- 4. Central Drugs Standard Control Organization. Good Clinical Practices-Guidelines for Clinical Trials on Pharmaceutical Products in India. New Delhi: Ministry of Health.
- 5. International Conference on Harmonisation of Technical requirements for registration of Pharmaceuticals for human use. ICH Harmonised Tripartite Guideline. Guideline for Good Clinical Practice.E6; May 1996.
- 6. Ethical Guidelines for Biomedical Research on Human Subjects. Indian Council of Medical Research, New Delhi.
- 7. Textbook of Clinical Trials edited by David Machin, Simon Day and Sylvan Green, John Wiley and Sons.
- 8. Clinical Data Management edited by R K Rondels, S A Varley, C F Webbs. Second Edition, Jan 2000, Wiley Publications.
- 9. Goodman & Gilman: JG Hardman, LE Limbard, McGraw Hill Publications.
- 10. Relevant review articles from recent medical and pharmaceutical literature.

PHARMACY PRACTICE PRACTICAL – I (MPP 105P)

Pharmacy Practice practical component includes experiments covering important topics of the courses Clinical Pharmacy Practice, Pharmacotherapeutics-I, Hospital & Community Pharmacy and Clinical Research.

List of Experiments (24)

- 1. Treatment Chart Review (one)
- 2. Medication History Interview (one)
- 3. Patient Medication Counseling (two)
- 4. Drug Information Query (two)
- 5. Poison Information Query (one)
- 6. Lab Data Interpretation (two)
- 7. Presentation of clinical cases of various disease conditions adopting Pharmaceutical Care Plan Model (eight)
- 8. ABC Analysis of a given list of medications (one)
- 9. Preparation of content of a medicine, with proper justification, for the inclusion in the hospital formulary (one)
- 10. Formulation and dispensing of a given IV admixtures (one)
- 11. Preparation of a patient information leaflet (two)
- 12. Preparation of Study Protocol (one)
- 13. Preparation of Informed Consent Form (one)

PRINCIPLES OF QUALITY USE OF MEDICINES (MPP 201T)

Scope:

This course is designed to impart basic knowledge and skills that are required to practice quality use of medicines (QUM) in different healthcare settings and also to promote quality use of medicines, in clinical practice, through evidence-based medicine approach.

Objectives:

Upon completion of this course it is expected that students shall be able to:

- Understand the principles of quality use of medicines
- Know the benefits and risks associated with use of medicines.
- Understand regulatory aspects of quality use of medicines
- Identify and resolve medication related problems
- Promote quality use of medicines
- Practice evidence-based medicines

THEORY 60 Hrs

- Introduction to Quality use of medicines (QUM): Definition and 12
 Principles of QUM, Key partners and responsibilities of the Hrs partners, Building blocks in QMC, Evaluation process in QMC, Communication in QUM, Cost effective prescribing.
- 2 Concepts in QUM
 Evidence based medicine: Definition, concept of evidence based medicine, Approach and practice of evidence based medicine in clinical settings
 Essential drugs: Definition, need, concept of essential drug, National essential drug policy and list
 Rational drug use: Definition, concept and need for rational drug use, Rational drug prescribing, Role of pharmacist in rational drug use.
- QUM in various settings: Hospital settings, Ambulatory 12 care/Residential care, Role of health care professionals in Hrs promoting the QUM, Strategies to promote the QUM, Impact of QUM on E-health, integrative medicine and multidisciplinary care. QUM in special population: Pediatric prescribing, Geriatric prescribing, Prescribing in pregnancy and lactation, Prescribing in immune compromised and organ failure patients.

- 4 Regulatory aspects of QUM in India: Regulation including 12 scheduling, Regulation of complementary medicines, Regulation Hrs of OTC medicines, Professional responsibility of pharmacist, Role of industry in QUM in medicine development.
- 5 Medication errors: Definition, categorization and causes of 12 medication errors, Detection and prevention of medication errors, Role of pharmacist in monitoring and management of medication errors Pharmacovigilance: Definition, aims and need pharmacovigilance, Types, predisposing factors and mechanism of adverse drug reactions (ADRs), Detection, reporting and of ADRs. monitoring Causality assessment Management of ADRs, Role of pharmacist in pharmacovigilance.

- 1. A Textbook of Clinical Pharmacy Practice Essential concepts and skills Parthasarathi G, Karin Nyfort-Hansen and Milap Nahata
- 2. Andrews EB, Moore N. Mann's Pharmacovigilance
- 3. Dipiro JT, Talbert RL, Yee GC. Pharmacotherapy: A Pathophysiologic Approach
- 4. Straus SE, Richardson WS, Glasziou P, Haynes RB. Evidence-Based Medicine: How to practice and teach it
- 5. Cohen MR. Medication Errors
- 6. Online:
 - http://medicines.australia.com.au/files/2012/05/MA_QUM_External_Reduced.pdf
 - http://curriculum.racgp.org.au/statements/quality-use-of-medicines/
 - http://www.rug.nl/research/portal/files/14051541/Chapter_2.pdf
- 7. Relevant review articles from recent medical and pharmaceutical literature.

PHARMACOTHERAPEUTICS II (MPP 202T)

Scope

This course aims to enable the students to understand the different treatment approaches in managing various disease conditions. Also, it imparts knowledge and skills in optimizing drug therapy of a patient by individualizing the treatment plan through evidence-based medicines.

Objectives

Upon completion of this course it is expected that students shall be able to:

- Describe and explain the rationale for drug therapy
- Summarize the therapeutic approach for management of various disease conditions including reference to the latest available evidence
- Discuss the clinical controversies in drug therapy and evidence based medicine
- Prepare individualized therapeutic plans based on diagnosis
- Identify the patient specific parameters relevant in initiating drug therapy, and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effect/s)

THEORY 60 Hrs

- 1. Nervous system: Epilepsy, Parkinson's disease, Stroke, 12 Headache, Alzheimer's disease, Neuralgias and Pain pathways Hrs and Pain management.
- Psychiatric disorders: Schizophrenia, Depression, Anxiety 12 disorders, Sleep disorders, Drug induced psychiatric disorders
 Renal system: Acute renal failure, Chronic renal failure, Renal dialysis, Drug induced renal disease
- 3 Infectious diseases: General guidelines for the rational use of 12 antibiotics and surgical prophylaxis, Urinary tract infections, Hrs Respiratory tract infections, Gastroenteritis, Tuberculosis, Malaria, Bacterial endocarditis. Septicemia.
- 4 Infectious diseases: Meningitis, HIV and opportunistic infections, 12 Rheumatic fever, Dengue fever, H1N1, Helmenthiasis, Fungal Hrs infections
 - Gynecological disorders: Dysmenorrhea, Hormone replacement therapy.

5 Oncology: General principles of cancer chemotherapy, 12 pharmacotherapy of breast cancer, lung cancer, head & neck Hrs cancer, hematological malignancies, Management of nausea and vomiting, Palliative care

- 1. Roger and Walker. Clinical Pharmacy and Therapeutics Churchill Livingstone publication.
- 2. Joseph T. Dipiro et al. Pharmacotherapy: A Pathophysiologic Approach-Appleton & Lange
- 3. Robins SL. Pathologic basis of disease -W.B. Saunders publication
- 4. Eric T. Herfindal. Clinical Pharmacy and Therapeutics- Williams and Wilkins Publication
- 5. Lloyd Young and Koda-Kimble MA Applied Therapeutics: The clinical Use of Drugs- Lippincott Williams and Wilkins
- 6. Chisholm- Burns Wells Schwinghammer Malone and Joseph P Dipiro. Pharmacotherapy Principles and practice-- McGraw Hill Publication
- 7. Carol Mattson Porth. Principles of Pathophysiology- Lippincott Williams and Wilkins
- 8. Harrison's. Principles of Internal Medicine McGraw Hill
- 9. Relevant review articles from recent medical and pharmaceutical literature

CLINICAL PHARMACOKINETICS AND THERAPEUTIC DRUG MONITORING (MPP 203T)

Scope

This course is designed to enable students to understand the basics principles and applications of pharmacokinetics in designing the individualized dosage regimen, to interpret the plasma drug concentration profile in altered pharmacokinetics, drug interactions and in therapeutic drug monitoring processes to optimize the drug dosage regimen. Also, it enables students to understand the basic concepts of pharmacogenetics, pharmacometrics for modeling and simulation of pharmacokinetic data.

Objectives

Upon completion of this course it is expected that students shall be able to:

- Design the drug dosage regimen for individual patients
- Interpret and correlate the plasma drug concentrations with patients' therapeutic outcomes
- Recommend dosage adjustment for patients with renal/ hepatic impairment
- Recommend dosage adjustment for paediatrics and geriatrics
- Manage pharmacokinetic drug interactions
- · Apply pharmacokinetic parameters in clinical settings
- Interpret the impact of genetic polymorphisms of individuals on pharmacokinetics and or pharmacodynamics of drugs
- Do pharmacokinetic modeling for the given data using the principles of pharmacometrics

THEORY 60 Hrs

Introduction to Clinical pharmacokinetics: Compartmental and Non compartmental models, Renal and non-renal clearance, Hrs Organ extraction and models of hepatic clearance, Estimation and determinants of bioavailability, Multiple dosing, Calculation of loading and maintenance doses
 Designing of dosage regimens: Determination of dose and dosing intervals, Conversion from intravenous to oral dosing, Nomograms and Tabulations in designing dosage regimen.

- 2 Pharmacokinetics of Drug Interaction: Pharmacokinetic drug 12 Hrs interactions, Inhibition and Induction of Drug metabolism, Inhibition of Biliary Excretion Pharmacogenetics: Genetic polymorphism in Drug metabolism: Cytochrome P-450 Isoenzymes, Genetic Polymorphism in Drug Targets. Pharmacogenetics and Drua Pharmacokinetic / Pharmacodynamic considerations Introduction to Pharmacometrics: Introduction to Bayesian Theory, Adaptive method or Dosing with feedback, Analysis of Population pharmacokinetic Data.
- 3 Non Linier Mixed Effects Modelling: The Structural or Base 12 Model. Modelina Random Effects. Modelina Covariate Relationships. Mixture Model. Estimation Methods, Model Building Techniques, Covariate Screening Methods, Testing the model assumptions, Precision of the parameter estimates and confidence intervals. Model misspecification and violation of the model assumptions, Model Validation, Simulation of dosing regimens and dosing recommendations. Pharmacometrics software.
- 4 Altered Pharmacokinetics: Drug dosing in the elderly, Drug 12 dosing in the paediatrics, Drug dosing in the obese patients, Drug dosing in the pregnancy and lactation, Drug dosing in the renal failure and extracorporeal removal of drugs, Drug dosing in the in hepatic failure.
- 5 Therapeutic Drug monitoring: Introduction, Individualization of 12 drug dosage regimen (Variability - Genetic, age, weight, disease and Interacting drugs). Indications for TDM. Protocol for TDM. Pharmacokinetic/Pharmacodynamic Correlation in drug therapy. TDM of drugs used in the following conditions: Cardiovascular disease: Digoxin, Lidocaine, Amiodarone; Seizure disorders: Carbamazepine, Sodium Valproate: Psychiatric Phenytoin, conditions: Lithium. Fluoxetine, Amitriptyline: transplantations: Cyclosporine; Cytotoxic Agents: Methotrexate, 5-FU. Cisplatin: Antibiotics: Vancomycin, Gentamicin, Meropenem.

- 1. Leon Shargel, Susanna Wu-Pong, Andrew Yu. Applied Biopharmaceutics & Pharmacokinetics. New York: Mc Graw Hill.
- 2. Peter L. Bonate. Pharmacokinetic Pharmacodynamic Modeling and Simulation. Springer Publications.
- 3. Michael E. Burton, Leslie M. Shaw, Jerome J. Schentag, William E.Evans. Applied Pharmacokinetics & Pharmacodynamics: Principles of Therapeutic Drug Monitoring. lippincott Williams & Wilkins.
- 4. Steven How-Yan Wong, Irving Sunshine. Handbook of Analytical Therapeutic Drug Monitoring and Toxicology. CRC Press, USA.
- 5. Soraya Dhillon, Andrzej Kostrzewski. Clinical pharmacokinetics. 1st edition. London: Pharmaceutical Press.
- 6. Joseph T.Dipiro, William J.Spruill, William E.Wade, Robert A.Blouin and Jane M.Pruemer .Concepts in Clinical Pharmacokinetics. American Society of Health-System Pharmacists, USA.
- 7. Malcolm Rowland, Thomas N. Tozer .Clinical Pharmacokinetics and pharmacodynamics: concepts and applications. lippincott Williams & Wilkins, USA.
- 8. Evans, Schentag, Jusko. Applied pharmacokinetics. American Society of Health system Pharmacists, USA.
- 9. Michael E. Winter. Basic Clinical Pharmacokinetics. lippincott Williams & Wilkins, USA.
- 10. Milo Gibaldi. Biopharmaceutics and Clinical Pharmacokinetics. Pharma Book Syndicate, USA.
- 11. Dhillon and Kostrzewski. Clinical pharmacokinetics. Pharmaceutical Press, London.
- 12. John E .Murphy. Clinical Pharmacokinetics. 5th edition. US: American Society of Health- System Pharmacist, USA.
- 13. Relevant review articles from recent medical and pharmaceutical literature

PHARMACOEPIDEMIOLOGY & PHARMACOECONOMICS (MPP 204T)

Scope

This course enables students to understand various pharmacoepidemiological methods and their clinical applications. Also, it aims to impart knowledge on basic concepts, assumptions, terminology, and methods associated with Pharmacoeconomics and health related outcomes, and when should be appropriate Pharmacoeconomic model should be applied for a health care regimen.

Objectives

Upon completion of this course it is expected that students shall be able to:

- Understand the various epidemiological methods and their applications
- Understand the fundamental principles of Pharmacoeconomics.
- Identify and determine relevant cost and consequences associated with pharmacy products and services.
- Perform the key Pharmacoeconomics analysis methods
- Understand the Pharmacoeconomic decision analysis methods and its applications.
- Describe current Pharmacoeconomic methods and issues.
- Understand the applications of Pharmacoeconomics to various pharmacy settings.

THEORY 60 Hrs

- Introduction to Pharmacoepidemiology: Definition, Scope, 12
 Need, Aims & Applications; Outcome measurement: Outcome measures, Drug use measures: Monetary units, Number of prescriptions, units of drug dispensed, defined daily doses, prescribed daily doses, Diagnosis and Therapy surveys, Prevalence, Incidence rate, Monetary units, number of prescriptions, unit of drugs dispensed, defined daily doses and prescribed daily doses, medications adherence measurements.
 Concept of risk: Measurement of risk, Attributable risk and relative risk, Time- risk relationship and odds ratio
- Pharmacoepidemiological Methods: Qualitative models: Drug 12 Utilization Review; Quantitative models: case reports, case series, Cross sectional studies, Cohort and case control studies, Calculation of Odds' ratio, Meta analysis models, Drug effects study in populations: Spontaneous reporting, Prescription event

monitoring, Post marketing surveillance, Record linkage systems, Applications of Pharmacoepidemiology

3 Introduction to Pharmacoeconomics: Definition, history of 12 Pharmacoeconomics, Need of Pharmacoeconomic studies in Hrs Indian healthcare system.

Cost categorization and resources for cost estimation: Direct costs. Indirect costs. Intangible costs.

Outcomes and Measurements of Pharmacoeconomics: Types of outcomes: Clinical outcome, Economic outcomes, Humanistic outcomes; Quality Adjusted Life Years, Disability Adjusted Life Years Incremental Cost Effective Ratio, Average Cost Effective Ratio. Person Time, Willingness To Pay, Time Trade Off and Discounting.

- 4 Pharmacoeconomic evaluations: Definition, Steps involved, 12 Applications, Advantages and disadvantages of the following Hrs Pharmacoeconomic models: Cost Minimization Analysis (CMA), Cost Benefit Analysis (CBA), Cost Effective Analysis (CEA), Cost Utility Analysis (CUA), Cost of Illness (COI), Cost Consequences Analysis (COA).
- Definition, Steps involved, Applications, Advantages and disadvantages of the following:

 Health related quality of life (HRQOL): Definition, Need for measurement of HRQOL, Common HRQOL measures.

 Definition, Steps involved, Applications of the following:

 Decision Analysis and Decision tree, Sensitivity analysis, Markov Modeling, Software used in pharmacoeconomic analysis, Applications of Pharmacoeconomics.

- 1. Rascati K L. Essentials of Pharmacoeconomics, Woulters Kluwer Lippincott Williams & Wilkins, Philadelphia.
- 2. Thomas E Getzen. Health economics. Fundamentals and Flow of Funds. John Wiley & Sons, USA.
- 3. Andrew Briggs, Karl Claxton, Mark Sculpher. Decision Modelling for Health Economic Evaluation, Oxford University Press, London.
- 4. Michael Drummond, Mark Sculpher, George Torrence, Bernie O'Brien and Greg Stoddart. Methods for the Economic Evaluation of Health Care Programmes Oxford University Press, London.

- 5. George E Mackinnon III. Understanding health outcomes and pharmacoeconomics.
- 6. Graker, Dennis. Pharmacoeconomics and outcomes.
- 7. Walley, Pharmacoeconomics.
- 8. Pharmacoeconomic ed. by Nowakowska University of Medical Sciences, Poznan.
- 9. Relevant review articles from recent medical and pharmaceutical literature

PHARMACY PRACTICE PRACTICAL - II (MPP 205P)

Pharmacy Practice practical component includes experiments covering important topics of the courses Principles of Quality Use of Medicines, Pharmacotherapeutics-II, Clinical Pharmacokinetics & Therapeutic Drug Monitoring and Pharmacoepidemiology and Pharmacoeconomics.

List of Experiments (24)

- 1. Causality assessment of adverse drug reactions (three)
- 2. Detection and management of medication errors (three)
- 3. Rational use of medicines in special population (three)
- 4. Presentation of clinical cases of various disease conditions adopting Pharmaceutical Care Plan Model (eight)
- 5. Calculation of Bioavailability and Bioequivalence from the given data (two)
- 6. Interpretation of Therapeutic Drug Monitoring reports of a given patient (three)
- 7. Calculation of various Pharmacoeconomic outcome analysis for the given data (two)

PHARMACOLOGY (MPL)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MPL 101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives

After completion of course student is able to know about,

- Chemicals and Excipients
- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 Hrs

- UV-Visible spectroscopy: Introduction, Theory, Laws, 10
 Instrumentation associated with UV-Visible spectroscopy, Choice Hrs
 of solvents and solvent effect and Applications of UV-Visible
 spectroscopy, Difference/ Derivative spectroscopy.
 - IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy, Data Interpretation.
 - Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence (Characterestics of drugs that can be analysed by flourimetry), Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
 - Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.
- 2 NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

10 Hrs 3 Mass Spectroscopy: Principle, Theory, Instrumentation of Mass Spectroscopy, Different types of ionization like electron impact, chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy.

Chromatography: Principle, apparatus, instrumentation, 10 chromatographic parameters, factors affecting resolution, isolation Hrs of drug from excipients, data interpretation and applications of the following:

- i) Thin Layer chromatography
- k) High Performance Thin Layer Chromatography
- I) Ion exchange chromatography
- m) Column chromatography
- n) Gas chromatography

4

- o) High Performance Liquid chromatography
- p) Ultra High Performance Liquid chromatography
- g) Affinity chromatography
- r) Gel Chromatography
- 5 Electrophoresis: Principle, Instrumentation, Working conditions, factors affecting separation and applications of the following:

a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso electric focusing

X ray Crystallography: Production of X rays, Different X ray methods, Bragg's law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.

6 Potentiometry: Principle, working, Ion selective Electrodes and Application of potentiometry.

10 Hrs

10

Hrs

10

Hrs

Thermal Techniques: Principle, thermal transitions and Instrumentation (Heat flux and power-compensation and designs), Modulated DSC, Hyper DSC, experimental parameters (sample preparation, experimental conditions, calibration, heating and cooling rates, resolution, source of errors) and their influence, advantage and disadvantages, pharmaceutical applications. Differential Thermal Analysis (DTA): Principle, instrumentation and advantage and disadvantages, pharmaceutical applications, derivative differential thermal analysis (DDTA). TGA: Principle, instrumentation, factors affecting results, advantage and disadvantages, pharmaceutical applications.

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.

 3. Instrumental methods of analysis – Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis Modern Methods Part B J W Munson, Vol 11. Marcel. Dekker Series
- 8. Spectroscopy of Organic Compounds, 2nd edn., P.S/Kalsi, Wiley estern Ltd., Delhi.
- 9. Textbook of Pharmaceutical Analysis, KA.Connors, 3rd Edition, John Wiley & Sons, 1982.

ADVANCED PHARMACOLOGY - I (MPL 102T)

Scope

The subject is designed to strengthen the basic knowledge in the field of pharmacology and to impart recent advances in the drugs used for the treatment of various diseases. In addition, this subject helps the students to understand the concepts of drug action and mechanisms involved

Objectives

Upon completion of the course the student shall be able to :

- Discuss the pathophysiology and pharmacotherapy of certain diseases
- Explain the mechanism of drug actions at cellular and molecular level
- Understand the adverse effects, contraindications and clinical uses of drugs used in treatment of diseases

THEORY 60 Hrs

1. General

Pharmacology 12

- a. Pharmacokinetics: The dynamics of drug absorption, distribution, biotransformation and elimination. Concepts of linear and non-linear compartment models. Significance of Protein binding.
- b. Pharmacodynamics: Mechanism of drug action and the relationship between drug concentration and effect. Receptors, structural and functional families of receptors, quantitation of drug receptors interaction and elicited effects.

2 Neurotransmission

12 Hrs

- a. General aspects and steps involved in neurotransmission.
- b. Neurohumoral transmission in autonomic nervous system (Detailed study about neurotransmitters- Adrenaline and Acetyl choline).
- c. Neurohumoral transmission in central nervous system (Detailed study about neurotransmitters- histamine, serotonin, dopamine, GABA, glutamate and glycine].
- d. Non adrenergic non cholinergic transmission (NANC). Cotransmission

Systemic Pharmacology

A detailed study on pathophysiology of diseases, mechanism of action, pharmacology and toxicology of existing as well as novel drugs used in the following systems

Autonomic Pharmacology

Parasympathomimetics and lytics, sympathomimetics and lytics, agents affecting

neuromuscular junction

- 3 Central nervous system Pharmacology
 General and local anesthetics
 Sedatives and hypnotics, drugs used to treat anxiety.
 Depression, psychosis, mania, epilepsy, neurodegenerative diseases.
 Narcotic and non-narcotic analgesics.
- 4 Cardiovascular Pharmacology 12 Diuretics, antihypertensives, antiischemics, anti- arrhythmics, Hrs drugs for heart failure and hyperlipidemia.

 Hematinics, coagulants, anticoagulants, fibrinolytics and antiplatelet drugs
- 5 Autocoid Pharmacology 12
 The physiological and pathological role of Histamine, Serotonin, Hrs
 Kinins Prostaglandins Opioid autocoids.
 Pharmacology of antihistamines, 5HT antagonists.

- 1. The Pharmacological Basis of Therapeutics, Goodman and Gillman's
- 2. Principles of Pharmacology. The Pathophysiologic basis of drug Therapy by David E Golan, Armen H, Tashjian Jr, Ehrin J, Armstrong, April W, Armstrong, Wolters, Kluwer-Lippincott Williams & Wilkins Publishers.
- 3. Basic and Clinical Pharmacology by B.G Katzung
- 4. Hand book of Clinical Pharmacokinetics by Gibaldi and Prescott.
- 5. Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C.Yu.
- 6. Graham Smith. Oxford textbook of Clinical Pharmacology.
- 7. Avery Drug Treatment
- 8. Dipiro Pharmacology, Pathophysiological approach.
- 9. Green Pathophysiology for Pharmacists.

- 10. Robbins & Cortan Pathologic Basis of Disease, 9th Ed. (Robbins Pathology)
- 11. A Complete Textbook of Medical Pharmacology by Dr. S.K Srivastava published by APC Avichal Publishing Company
- 12. KD. Tripathi. Essentials of Medical Pharmacology.
- 13. Modern Pharmacology with Clinical Applications, Craig Charles R. & Stitzel Robert E., Lippincott Publishers.
- 14. Clinical Pharmacokinetics & Pharmacodynamics : Concepts and Applications Malcolm Rowland and Thomas N.Tozer, Wolters Kluwer, Lippincott Williams & Wilkins Publishers.
- 15. Applied biopharmaceutics and Pharmacokinetics, Pharmacodynamics and Drug metabolism for industrial scientists.
- 16. Modern Pharmacology, Craig CR. & Stitzel RE, Little Brown & Company.

PHARMACOLOGICAL AND TOXICOLOGICAL SCREENING METHODS - I (MPL 103T)

Scope

This subject is designed to impart the knowledge on preclinical evaluation of drugs and recent experimental techniques in the drug discovery and development. The subject content helps the student to understand the maintenance of laboratory animals as per the guidelines, basic knowledge of various in-vitro and in-vivo preclinical evaluation processes

Objectives

Upon completion of the course the student shall be able to,

- Appraise the regulations and ethical requirement for the usage of experimental animals.
- Describe the various animals used in the drug discovery process and good laboratory practices in maintenance and handling of experimental animals
- Describe the various newer screening methods involved in the drug discovery process
- Appreciate and correlate the preclinical data to humans

THEORY 60 Hrs

Laboratory Animals
 Common laboratory animals: Description, handling and Hrs
 applications of different species and strains of animals.

Transgenic animals: Production, maintenance and applications Anaesthesia and euthanasia of experimental animals.

Maintenance and breeding of laboratory animals.

CPCSEA guidelines to conduct experiments on animals

Good laboratory practice. Bioassay-Principle, scope and limitations and methods

Preclinical screening of new substances for the 12 pharmacological activity using in vivo, in vitro, and other Hrs possible animal alternative models.

General principles of preclinical screening. CNS Pharmacology: behavioral and muscle co ordination, CNS stimulants and

depressants, anxiolytics, anti-psychotics, anti epileptics and nootropics. Drugs for neurodegenerative diseases like Parkinsonism, Alzheimers and multiple sclerosis. Drugs acting on Autonomic Nervous System.

- 3 Preclinical screening of new substances for the 12 pharmacological activity using in vivo, in vitro, and other Hrs possible animal alternative models.
 - Respiratory Pharmacology: anti-asthmatics, drugs for COPD and anti allergics. Reproductive Pharmacology: Aphrodisiacs and antifertility agents Analgesics, antiinflammatory and antipyretic agents. Gastrointestinal drugs: anti ulcer, anti-emetic, anti-diarrheal and laxatives.
- 4 Preclinical screening of new substances for the 12 pharmacological activity using in vivo, in vitro, and other Hrs possible animal alternative models.
 - Cardiovascular Pharmacology: antihypertensives, antiarrythmics, antianginal, antiatherosclerotic agents and diuretics. Drugs for metabolic disorders like anti-diabetic, antidyslipidemic agents. Anti cancer agents. Hepatoprotective screening methods.
- 5 Preclinical screening of new substances for the 12 pharmacological activity using in vivo, in vitro, and other Hrs possible animal alternative models.

limmunomodulators, Immunosuppressants and immunostimulants

General principles of immunoassay: theoretical basis and optimization of immunoassay, heterogeneous and homogenous immunoassay systems. Immunoassay methods evaluation; protocol outline, objectives and preparation. Immunoassay for digoxin and insulin

Limitations of animal experimentation and alternate animal experiments.

Extrapolation of in $\ensuremath{\mathrm{vitro}}$ data to preclinical and preclinical to humans

- 1. Biological standardization by J.H. Burn D.J. Finney and I.G. Goodwin
- 2. Screening methods in Pharmacology by Robert Turner. A
- 3. Evaluation of drugs activities by Laurence and Bachrach
- 4. Methods in Pharmacology by Arnold Schwartz.
- 5. Fundamentals of experimental Pharmacology by M.N.Ghosh
- 6. Pharmacological experiment on intact preparations by Churchill Livingstone
- 7. Drug discovery and Evaluation by Vogel H.G.
- 8. Experimental Pharmacology by R.K.Goyal.
- 9. Preclinical evaluation of new drugs by S.K. Guta
- 10. Handbook of Experimental Pharmacology, SK.Kulkarni
- 11. Practical Pharmacology and Clinical Pharmacy, SK.Kulkarni, 3rd Edition.
- 12. David R.Gross. Animal Models in Cardiovascular Research, 2nd Edition, Kluwer Academic Publishers, London, UK.
- 13. Screening Methods in Pharmacology, Robert A.Turner.
- 14. Rodents for Pharmacological Experiments, Dr. Tapan Kumar chatterjee.
- 15. Practical Manual of Experimental and Clinical Pharmacology by Bikash Medhi (Author), Ajay Prakash (Author)

CELLULAR AND MOLECULAR PHARMACOLOGY (MPL 104T)

Scope:

The subject imparts a fundamental knowledge on the structure and functions of cellular components and help to understand the interaction of these components with drugs. This information will further help the student to apply the knowledge in drug discovery process.

Objectives:

Upon completion of the course, the student shall be able to,

- Explain the receptor signal transduction processes.
- Explain the molecular pathways affected by drugs.
- Appreciate the applicability of molecular pharmacology and biomarkers in drug discovery process.
- Demonstrate molecular biology techniques as applicable for pharmacology

THEORY 60 Hrs

1. Cell biology

12

Structure and functions of cell and its organelles

Hrs

Genome organization. Gene expression and its regulation, importance of siRNA and micro RNA, gene mapping and gene sequencing

Cell cycles and its regulation.

Cell death- events, regulators, intrinsic and extrinsic pathways of apoptosis.

Necrosis and autophagy.

2 Cell signaling

12

Intercellular and intracellular signaling pathways.

Hrs

Classification of receptor family and molecular structure ligand gated ion channels; G-protein coupled receptors, tyrosine kinase receptors and nuclear receptors.

Secondary messengers: cyclic AMP, cyclic GMP, calcium ion, inositol 1,4,5-trisphosphate, (IP3), NO, and diacylglycerol.

Detailed study of following intracellular signaling pathways: cyclic AMP signaling pathway, mitogen-activated protein kinase (MAPK) signaling, Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway.

3 Principles and applications of genomic and proteomic tools DNA electrophoresis, PCR (reverse transcription and real time), Gene sequencing, micro array technique, SDS page, ELISA and western blotting,

Hrs

12

Hrs

Recombinant DNA technology and gene therapy

Basic principles of recombinant DNA technology-Restriction enzymes, various types of vectors. Applications of recombinant DNA technology.

Gene therapy- Various types of gene transfer techniques, clinical applications and recent advances in gene therapy.

4 Pharmacogenomics

Gene mapping and cloning of disease gene.

Genetic variation and its role in health/ pharmacology

Polymorphisms affecting drug metabolism

Genetic variation in drug transporters

Genetic variation in G protein coupled receptors

Applications of proteomics science: Genomics, proteomics, metabolomics, functionomics, nutrigenomics

Immunotherapeutics

Types of immunotherapeutics, humanisation antibody therapy, Immunotherapeutics in clinical practice

5 a. Cell culture techniques

12 Hrs

Basic equipments used in cell culture lab. Cell culture media, various types of cell culture, general procedure for cell cultures; isolation of cells, subculture, cryopreservation, characterization of cells and their application.

Principles and applications of cell viability assays, glucose uptake

assay, Calcium influx assays
Principles and applications of flow cytometry

b. Biosimilars

- 1. The Cell, A Molecular Approach. Geoffrey M Cooper.
- 2. Pharmacogenomics: The Search for Individualized Therapies. Edited by J. Licinio and M -L. Wong
- 3. Handbook of Cell Signaling (Second Edition) Edited by Ralph A. et.al
- 4. Molecular Pharmacology: From DNA to Drug Discovery. John Dickenson et.al
- 5. Basic Cell Culture protocols by Cheril D.Helgason and Cindy L.Miller
- 6. Basic Cell Culture (Practical Approach) by J. M. Davis (Editor)
- 7. Animal Cell Culture: A Practical Approach by John R. Masters (Editor)
- 8. Current porotocols in molecular biology vol I to VI edited by Frederick M.Ausuvel et la.

PHARMACOLOGICAL PRACTICAL - I (MPL 105P)

- Analysis of pharmacopoeial compounds and their formulations by UV Vis spectrophotometer
- 2. Simultaneous estimation of multi component containing formulations by UV spectrophotometry
- 3. Experiments based on HPLC
- 4. Experiments based on Gas Chromatography
- 5. Estimation of riboflavin/quinine sulphate by fluorimetry
- 6. Estimation of sodium/potassium by flame photometry

Handling of laboratory animals.

- 1. Various routes of drug administration.
- 2. Techniques of blood sampling, anesthesia and euthanasia of experimental animals.
- 3. Functional observation battery tests (modified Irwin test)
- 4. Evaluation of CNS stimulant, depressant, anxiogenics and anxiolytic, anticonvulsant activity.
- Evaluation of analgesic, anti-inflammatory, local anesthetic, mydriatic and miotic activity.
- 6. Evaluation of diuretic activity.
- 7. Evaluation of antiulcer activity by pylorus ligation method.
- 8. Oral glucose tolerance test.
- 9. Isolation and identification of DNA from various sources (Bacteria, Cauliflower, onion, Goat liver).
- 10. Isolation of RNA from yeast
- 11. Estimation of proteins by Braford/Lowry's in biological samples.
- 12. Estimation of RNA/DNA by UV Spectroscopy
- 13. Gene amplification by PCR.
- 14. Protein quantification Western Blotting.
- 15. Enzyme based in-vitro assays (MPO, AChEs, α amylase, α glucosidase).
- 16. Cell viability assays (MTT/Trypan blue/SRB).
- 17. DNA fragmentation assay by agarose gel electrophoresis.
- 18. DNA damage study by Comet assay.
- 19. Apoptosis determination by fluorescent imaging studies.
- 20. Pharmacokinetic studies and data analysis of drugs given by different routes of administration using softwares
- 21. Enzyme inhibition and induction activity
- 22. Extraction of drug from various biological samples and estimation of drugs in biological fluids using different analytical techniques (UV)
- 23. Extraction of drug from various biological samples and estimation of drugs in biological fluids using different analytical techniques (HPLC)

- 1. CPCSEA, OECD, ICH, USFDA, Schedule Y, EPA guidelines,
- 2. Fundamentals of experimental Pharmacology by M.N.Ghosh
- 3. Handbook of Experimental Pharmacology by S.K. Kulkarni.
- 4. Drug discovery and Evaluation by Vogel H.G.
- 5. Spectrometric Identification of Organic compounds Robert M Silverstein,
- 6. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman,
- 7. Vogel's Text book of quantitative chemical analysis Jeffery, Basset, Mendham, Denney,
- 8. Basic Cell Culture protocols by Cheril D. Helgason and Cindy L.Mille
- 9. Basic Cell Culture (Practical Approach) by J. M. Davis (Editor)
- 10. Animal Cell Culture: A Practical Approach by John R. Masters (Editor)
- 11. Practical Manual of Experimental and Clinical Pharmacology by Bikash Medhi(Author), Ajay Prakash (Author) Jaypee brothers' medical publishers Pvt. Ltd

ADVANCED PHARMACOLOGY - II (MPL 201T)

Scope

The subject is designed to strengthen the basic knowledge in the field of pharmacology and to impart recent advances in the drugs used for the treatment of various diseases. In addition, the subject helps the student to understand the concepts of drug action and mechanism involved

Objectives

Upon completion of the course the student shall be able to:

- Explain the mechanism of drug actions at cellular and molecular level
- Discuss the Pathophysiology and pharmacotherapy of certain diseases
- Understand the adverse effects, contraindications and clinical uses of drugs used in treatment of diseases

TH	EORY 60	Hrs
1.	Endocrine Pharmacology Molecular and cellular mechanism of action of hormones such as growth hormone, prolactin, thyroid, insulin and sex hormones	12 Hrs
	Anti-thyroid drugs, Oral hypoglycemic agents, Oral contraceptives, Corticosteroids. Drugs affecting calcium regulation	
2	Chemotherapy Cellular and molecular mechanism of actions and resistance of antimicrobial agents such as ß-lactams, aminoglycosides, quinolones, Macrolide antibiotics. Antifungal, antiviral, and anti-TB drugs.	12 Hrs
3	Chemotherapy Drugs used in Protozoal Infections Drugs used in the treatment of Helminthiasis Chemotherapy of cancer Immunopharmacology Cellular and biochemical mediators of inflammation and immune response. Allergic or hypersensitivity reactions. Pharmacotherapy of asthma and COPD. Immunosuppressants and Immunostimulants	12 Hrs

4 GIT Pharmacology 12
Antiulcer drugs, Prokinetics, antiemetics, anti-diarrheals and Hrs
drugs for constipation
and irritable bowel syndrome.

Chronopharmacology

Biological and circadian rhythms, applications of chronotherapy in various diseases like

cardiovascular disease, diabetes, asthma and peptic ulcer

Free radicals Pharmacology
 Generation of free radicals, role of free radicals in etiopathology of various diseases

such as diabetes, neurodegenerative diseases and cancer.

Protective activity of certain important antioxidant

Recent Advances in Treatment:

Alzheimer's disease, Parkinson's disease, Cancer, Diabetes mellitus

- 1. The Pharmacological basis of therapeutics- Goodman and Gill man's
- 2. Principles of Pharmacology. The Pathophysiologic basis of drug therapy by David E Golan et al.
- 3. Basic and Clinical Pharmacology by B.G -Katzung
- 4. Pharmacology by H.P. Rang and M.M. Dale.
- 5. Hand book of Clinical Pharmacokinetics by Gibaldi and Prescott.
- 6. Text book of Therapeutics, drug and disease management by E T. Herfindal and Gourley.
- 7. Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C.Yu.
- 8. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists
- 9. Robbins & Cortan Pathologic Basis of Disease, 9th Ed. (Robbins Pathology)
- 10. A Complete Textbook of Medical Pharmacology by Dr. S.K Srivastava published by APC Avichal Publishing Company.
- 11. KD.Tripathi. Essentials of Medical Pharmacology
- 12. Principles of Pharmacology. The Pathophysiologic basis of drug Therapy by David E Golan, Armen H, Tashjian Jr, Ehrin J, Armstrong, April W, Armstrong, Wolters, Kluwer-Lippincott Williams & Wilkins Publishers

PHARMACOLOGICAL AND TOXICOLOGICAL SCREENING METHODS-II (MPL 202T)

Scope:

This subject imparts knowledge on the preclinical safety and toxicological evaluation of drug & new chemical entity. This knowledge will make the student competent in regulatory toxicological evaluation.

Objectives:

Upon completion of the course, the student shall be able to,

- Explain the various types of toxicity studies.
- Appreciate the importance of ethical and regulatory requirements for toxicity studies.
- Demonstrate the practical skills required to conduct the preclinical toxicity studies.

THEORY 60 Hrs

- Basic definition and types of toxicology (general, mechanistic, 12 regulatory and descriptive)
 Regulatory guidelines for conducting toxicity studies OECD, ICH, EPA and Schedule Y
 OECD principles of Good laboratory practice (GLP)
 History, concept and its importance in drug development
- 2 Acute, sub-acute and chronic- oral, dermal and inhalational 12 studies as per OECD guidelines. Hrs Acute eye irritation, skin sensitization, dermal irritation & dermal toxicity studies.
 - Test item characterization- importance and methods in regulatory toxicology studies
- 3 Reproductive toxicology studies, Male reproductive toxicity 12 studies, female reproductive studies (segment I and segment III), Hrs teratogenecity studies (segment II)
 Genotoxicity studies (Ames Test, in vitro and in vivo Micronucleus and Chromosomal aberrations studies)
 In vivo carcinogenicity studies
- 4 IND enabling studies (IND studies)- Definition of IND, importance 12 of IND, industry perspective, list of studies needed for IND Hrs submission.

Safety pharmacology studies- origin, concepts and importance of safety pharmacology.

Tier1- CVS, CNS and respiratory safety pharmacology, HERG assay. Tier2- GI, renal and other studies

5 Toxicokinetics- Toxicokinetic evaluation in preclinical studies, 12 saturation kinetics Importance and applications of toxicokinetic Hrs studies.

Alternative methods to animal toxicity testing.

- 1. Hand book on GLP, Quality practices for regulated non-clinical research and development (http://www.who.int/tdr/publications/documents/glp-handbook.pdf).
- 2. Schedule Y Guideline: drugs and cosmetics (second amendment) rules, 2005, ministry of health and family welfare (department of health) New Delhi
- 3. Drugs from discovery to approval by Rick NG.
- 4. Animal Models in Toxicology, 3rd Edition, Lower and Bryan
- 5. OECD test guidelines.
- 6. Principles of toxicology by Karen E. Stine, Thomas M. Brown.
- Guidance for Industry M3(R2) Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals (http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinform ation/guidances/ucm073246.pdf)

PRINCIPLES OF DRUG DISCOVERY (MPL 203T)

Scope:

The subject imparts basic knowledge of drug discovery process. This information will make the student competent in drug discovery process

Objectives:

Upon completion of the course, the student shall be able to,

- Explain the various stages of drug discovery.
- Appreciate the importance of the role of genomics, proteomics and bioinformatics in drug discovery
- Explain various targets for drug discovery.
- Explain various lead seeking method and lead optimization
- Appreciate the importance of the role of computer aided drug design in drug discovery

THEORY 60 Hrs

- An overview of modern drug discovery process: Target 12 identification, target validation, lead identification and lead Hrs Optimization. Economics of drug discovery.
 - Target Discovery and validation-Role of Genomics, Proteomics and Bioinformatics. Role of Nucleic acid microarrays, Protein microarrays, Antisense technologies, siRNAs, antisense oligonucleotides, Zinc finger proteins. Role of transgenic animals in target validation.
- 2 Lead Identification- combinatorial chemistry & high throughput 12 screening, in silico lead discovery techniques, Assay development Hrs for hit identification.

Protein structure

- Levels of protein structure, Domains, motifs, and folds in protein structure. Computational prediction of protein structure: Threading and homology modeling methods. Application of NMR and X-ray crystallography in protein structure prediction
- 3 Rational Drug Design 12
 Traditional vs rational drug design, Methods followed in traditional Hrs
 drug design, High throughput screening, Concepts of Rational
 Drug Design, Rational Drug Design Methods: Structure and
 Pharmacophore based approaches

- Virtual Screening techniques: Drug likeness screening, Concept of pharmacophore mapping and pharmacophore based Screening,
- 4 Molecular docking: Rigid docking, flexible docking, manual 12 docking; Docking based screening. De novo drug design. Hrs Quantitative analysis of Structure Activity Relationship History and development of QSAR, SAR versus QSAR, Physicochemical parameters, Hansch analysis, Fee Wilson analysis and relationship between them.
- SAR Statistical methods regression analysis, partial least square analysis (PLS) and other multivariate statistical methods. Hrs 3D-QSAR approaches like COMFA and COMSIA Prodrug design-Basic concept, Prodrugs to improve patient acceptability, Drug solubility, Drug absorption and distribution, site specific drug delivery and sustained drug action. Rationale of prodrug design and practical consideration of prodrug design

- MouldySioud. Target Discovery and Validation Reviews and Protocols: Volume 2 Emerging Molecular Targetsand Treatment Options. 2007 Humana Press Inc.
- 2. Darryl León. Scott Markelln. Silico Technologies in Drug Target Identification and Validation. 2006 by Taylor and Francis Group, LLC.
- 3. Johanna K. DiStefano. Disease Gene Identification. Methods and Protocols. Springer New York Dordrecht Heidelberg London.
- 4. Hugo Kubiny. QSAR: Hansch Analysis and Related Approaches. Methods and Principles in Medicinal Chemistry. Publisher Wiley-VCH
- 5. Klaus Gubernator, Hans-Joachim Böhm. Structure-Based Ligand Design. Methods and Principles in Medicinal Chemistry. Publisher Wiley-VCH
- Abby L. Parrill. M. Rami Reddy. Rational Drug Design. Novel Methodology and Practical Applications. ACS Symposium Series; American Chemical Society: Washington. DC. 1999.
- 7. J. Rick Turner. New drug development design, methodology and, analysis. John Wiley & Sons, Inc., New Jersey.

CLINICAL RESEARCH AND PHARMACOVIGILANCE (MPL 204T)

Scope:

This subject will provide a value addition and current requirement for the students in clinical research and pharmacovigilance. It will teach the students on conceptualizing, designing, conducting, managing and reporting of clinical trials. This subject also focuses on global scenario of Pharmacovigilance in different methods that can be used to generate safety data. It will teach the students in developing drug safety data in Pre-clinical, Clinical phases of Drug development and post market surveillance.

Objectives:

Upon completion of the course, the student shall be able to,

- Explain the regulatory requirements for conducting clinical trial
- Demonstrate the types of clinical trial designs
- Explain the responsibilities of key players involved in clinical trials
- Execute safety monitoring, reporting and close-out activities
- Explain the principles of Pharmacovigilance
- Detect new adverse drug reactions and their assessment
- Perform the adverse drug reaction reporting systems and communication in Pharmacovigilance

THEORY 60 Hrs

- 1. 12 Regulatory Perspectives of Clinical Trials: Principles of International Conference Origin Hrs Harmonization - Good Clinical Practice (ICH-GCP) guidelines Institutional Ethical Committee: Review Board. Guidelines for Biomedical Research and Human Participant-Schedule Y. ICMR Informed Consent Process: Structure and content of an Informed Consent Process Ethical principles governing informed consent process
- 2 Clinical Trials: Types and Design
 Experimental Study- RCT and Non RCT,
 Observation Study: Cohort, Case Control, Cross sectional
 Clinical Trial Study Team
 Roles and responsibilities of Clinical Trial Personnel: Investigator,
 Study Coordinator, Sponsor, Contract Research Organization and its management

- 3 Clinical Trial Documentation- Guidelines to the preparation of 12 documents, Preparation of protocol, Investigator Brochure, Case Hrs Report Forms, Clinical Study Report Clinical Trial Monitoring-Safety Monitoring in CT

 Adverse Drug Reactions: Definition and types. Detection and reporting methods. Severity and seriousness assessment. Predictability and preventability assessment, Management of adverse drug reactions; Terminologies of ADR.
- 4 Basic and establishment aspects, terminologies 12 pharmacovigilance Hrs History and progress of pharmacovigilance, Significance of safety monitoring. Pharmacovigilance in India and international aspects. WHO international drug monitoring programme, WHO Regulatory terminologies of ADR, evaluation of medication safety, Establishing pharmacovigilance centres in Hospitals, Industry and National programmes related to pharmacovigilance. Roles and responsibilities in Pharmacovigilance
- 5 Methods. ADR 12 reporting tools used in and Pharmacovigilance Hrs International classification of diseases. International proprietary names for drugs, Passive and Active surveillance, Comparative observational studies, Targeted clinical investigations and Vaccine safety surveillance. Spontaneous reporting system and Reporting to regulatory authorities, Guidelines for ADRs reporting. Argus, Aris G Pharmacovigilance, VigiFlow, Statistical methods for evaluating medication safety data.
- 6 Pharmacoepidemiology, pharmacoeconomics, safety 12 pharmacology Hrs

- Central Drugs Standard Control Organization- Good Clinical Practices, Guidelines for Clinical Trials on Pharmaceutical Products in India. New Delhi: Ministry of Health;2001.
- International Conference on Harmonization of Technical requirements for registration of Pharmaceuticals for human use. ICH Harmonized Tripartite Guideline. Guideline for Good Clinical Practice.E6; May 1996.

- 3. Ethical Guidelines for Biomedical Research on Human Subjects 2000. Indian Council of Medical Research, New Delhi.
- 4. Textbook of Clinical Trials edited by David Machin, Simon Day and Sylvan Green, March 2005, John Wiley and Sons.
- 5. Clinical Data Management edited by R K Rondels, S A Varley, C F Webbs. Second Edition, Jan 2000, Wiley Publications.
- 6. Handbook of clinical Research. Julia Lloyd and Ann Raven Ed. Churchill Livingstone.
- 7. Principles of Clinical Research edited by Giovanna di Ignazio, Di Giovanna and Haynes.

$PHARMACOLOGICAL\ PRACTICAL\ -\ II$

(MPL 205P)

- 1. To record the DRC of agonist using suitable isolated tissues preparation.
- 2. To study the effects of antagonist/potentiating agents on DRC of agonist using suitable isolated tissue preparation.
- 3. To determine to the strength of unknown sample by matching bioassay by using suitable tissue preparation.
- 4. To determine to the strength of unknown sample by interpolation bioassay by using suitable tissue preparation
- 5. To determine to the strength of unknown sample by bracketing bioassay by using suitable tissue preparation
- 6. To determine to the strength of unknown sample by multiple point bioassay by using suitable tissue preparation.
- 7. Estimation of PA_2 values of various antagonists using suitable isolated tissue preparations.
- 8. To study the effects of various drugs on isolated heart preparations
- 9. Recording of rat BP, heart rate and ECG.
- 10. Recording of rat ECG
- 11. Drug absorption studies by averted rat ileum preparation.
- 12. Acute oral toxicity studies as per OECD guidelines.
- 13. Acute dermal toxicity studies as per OECD guidelines.
- 14. Repeated dose toxicity studies- Serum biochemical, haematological, urine analysis, functional observation tests and histological studies.
- 15. Drug mutagenicity study using mice bone-marrow chromosomal aberration test.
- 16. Protocol design for clinical trial.(3 Nos.)
- 17. Design of ADR monitoring protocol.
- 18. In-silico docking studies. (2 Nos.)
- 19. In-silico pharmacophore based screening.
- 20. In-silico QSAR studies.
- 21. ADR reporting

- 1. Fundamentals of experimental Pharmacology-by M.N.Ghosh
- 2. Hand book of Experimental Pharmacology-S.K.Kulakarni
- 3. Text book of in-vitro practical Pharmacology by Ian Kitchen
- 4. Bioassay Techniques for Drug Development by Atta-ur-Rahman, Iqbal choudhary and William Thomsen
- 5. Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C.Yu.
- 6. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists.

PHARMACOGNOSY (MPG)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MPG 101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives

After completion of course student is able to know,

- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 Hrs

- UV-Visible spectroscopy: Introduction, Theory, Laws, 12
 Instrumentation associated with UV-Visible spectroscopy, Choice Hrs of solvents and solvent effect and Applications of UV-Visible spectroscopy.
 - IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy
 - Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
 - Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.
- 2 NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.1

12 Hrs

- 3 Mass Spectroscopy: Principle, Theory, Instrumentation of Mass 10 Spectroscopy, Different types of ionization like electron impact, Hrs chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy.
- 4 Chromatography: Principle, apparatus, instrumentation, 10 chromatographic parameters, factors affecting resolution, isolation Hrs of drug from excipients, data interpretation and applications of the following:
 - a) Thin Layer chromatography
 - b) High Performance Thin Layer Chromatography
 - c) Ion exchange chromatography
 - d) Column chromatography
 - e) Gas chromatography
 - f) High Performance Liquid chromatography
 - g) Ultra High Performance Liquid chromatography
 - h) Affinity chromatography
 - i) Gel Chromatography
- 5 Electrophoresis: Principle, Instrumentation, Working conditions, 10 factors affecting separation and applications of the following:
 - a) Paper electrophoresis
 - b) Gel electrophoresis
 - c) Capillary electrophoresis
 - d) Zone electrophoresis
 - e) Moving boundary electrophoresis
 - f) Iso electric focusing

X ray Crystallography: Production of X rays, Different X ray methods, Bragg's law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.

6 Potentiometry: Principle, working, Ion selective Electrodes and 10 Application of potentiometry.

Thermal Techniques: Principle, thermal transitions and Instrumentation (Heat flux and power-compensation and designs), Modulated DSC, Hyper DSC, experimental parameters (sample preparation, experimental conditions, calibration, heating and

cooling rates, resolution, source of errors) and their influence, advantage and disadvantages, pharmaceutical applications. Differential Thermal Analysis (DTA): Principle, instrumentation and advantage and disadvantages, pharmaceutical applications, derivative differential thermal analysis (DDTA). TGA: Principle, instrumentation, factors affecting results, advantage and disadvantages, pharmaceutical applications.

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis Modern Methods Part B J W Munson, Vol 11, Marcel. Dekker Series
- 8. Spectroscopy of Organic Compounds, 2nd edn., P.S/Kalsi, Wiley estern Ltd., Delhi.

ADVANCED PHARMACOGNOSY - I (MPG 102T)

SCOPE

To learn and understand the advances in the field of cultivation and isolation of drugs of natural origin, various phytopharmaceuticals, nutraceuticals and their medicinal use and health benefits.

OBJECTIVES

Upon completion of the course, the student shall be able to know the,

- · advances in the cultivation and production of drugs
- various phyto-pharmaceuticals and their source, its utilization and medicinal value.
- various nutraceuticals/herbs and their health benefits
- Drugs of marine origin
- Pharmacovigilance of drugs of natural origin

THEORY 60 Hrs

- 1. Plant drug cultivation: General introduction to the importance of 12 Pharmacognosy in herbal drug industry, Indian Council of Hrs Agricultural Research, Current Good Agricultural Practices, Current Good Cultivation Practices, Current Good Collection Practices, Conservation of medicinal plants- Ex-situ and Insitu conservation of medicinal plants.
- 2 Marine natural products: General methods of isolation and 12 purification, Study of Marine toxins, Recent advances in research Hrs in marine drugs, Problems faced in research on marine drugs such as taxonomical identification, chemical screening and their solution.

12

- 3 Nutraceuticals: Current trends and future scope, Inorganic mineral supplements, Vitamin supplements, Digestive enzymes, Dietary fibres, Cereals and grains, Health drinks of natural origin, Antioxidants, Polyunsaturated fatty acids, Herbs as functional foods, Formulation and standardization of neutraceuticals, Regulatory aspects, FSSAI guidelines, Sources, name of marker compounds and their chemical nature, medicinal uses and health benefits of following
 - i) Spirulina ii) Soya bean iii) Ginseng iv) Garlic v) Broccoli vi) Green and Herbal Tea vii) Flax seeds viii) Black cohosh ix) Turmeric.

- 4 Phytopharmaceuticals: Occurrence, isolation and characteristic 12 features (Chemical nature, uses in pharmacy, medicinal and Hrs health benefits) of following.
 - a) Carotenoids i) α and β Carotene ii) Xanthophyll (Lutein)
 - b) Limonoids i) d-Limonene ii) α Terpineol
 - c) Saponins i) Shatavarins
 - d) Flavonoids i) Resveratrol ii) Rutin iii) Hesperidin iv) Naringin v) Quercetin
 - e) Phenolic acids- Ellagic acid
 - f) Vitamins
 - g) Tocotrienols and Tocopherols
 - h) Andrographolide, Glycolipids, Gugulipids, Withanolides, Vascine. Taxol
 - i) Miscellaneous
- 5 Pharmacovigilance of drugs of natural origin: WHO and 12 AYUSH guidelines for safety monitoring of natural medicine, Hrs Spontaneous reporting schemes for biodrug adverse reactions, bio drug-drug and bio drug-food interactions with suitable examples.

REFERENCES (Latest Editions of)

- Pharmacognosy G. E. Trease and W.C. Evans. Saunders Edinburgh, New York.
- 2. Pharmacognosy-Tyler, Brady, Robbers
- 3. Modem Methods of Plant Analysis- Peach & M.V. Tracey, Vol. I&II
- 4. Text Book of Pharmacognosy by T.E. Wallis
- 5. Marine Natural Products-Vol.I to IV.
- 6. Natural products: A lab guide by Raphael Ikan, Academic Press 1991.
- 7. Glimpses of Indian Ethano Pharmacology, P. Pushpangadam. Ulf Nyman. V.George Tropical Botanic Garden & Research Institute, 1995.
- 8. Medicinal natural products (a biosynthetic approach), Paul M. Dewick, John Wiley & Sons Ltd., England, 1998.
- 9. Chemistry of Marine Natural Products- Paul J. Schewer 1973.
- 10. Herbal Drug Industry by RD. Choudhary, Eastern Publisher, New Delhi, 1996.
- 11. Cultivation of Medicinal Plants by C.K. Atal & B.M. Kapoor.
- 12. Cultivation and Utilization of Aromatic Plants, C.K. Atal & B.M. Kapoor
- 13. Cultivation of medicinal and aromatic crops, AA Farooqui and B.S. Sreeramu. University Press, 2001.

- 14. Natural Products from Plants, 1st edition, by Peter B. Kaufman, CRC Press, New York, 1998
- 15. Recent Advances in Phytochemistry- Vol. 1&4: Scikel Runeckles- Appleton Century crofts.
- 16. Text book of Pharmacognosy, C.K.Kokate, Purohit, Ghokhale, Nirali Prakasshan, 1996.
- 17. Pharmacognosy and Pharmacobiotechnology, Ashutoshkar, New Age Publications, New Delhi.

PHYTOCHEMISTRY (MPG 103T)

SCOPE

Students shall be equipped with the knowledge of natural product drug discovery and will be able to isolate, identify and extract and the phytoconstituents

OBJECTIVES

Upon completion of the course, the student shall be able to know the,

- different classes of phytoconstituents, their biosynthetic pathways, their properties, extraction and general process of natural product drug discovery
- phytochemical fingerprinting and structure elucidation of phytoconstituents.

THEORY 60 Hrs

- Biosynthetic pathways and Radio tracing techniques: 12
 Constituents & their Biosynthesis, Isolation, Characterization and purification with a special reference to their importance in herbal industries of following phyto-pharmaceuticals containing drugs:
 - a) Alkaloids: Ephedrine, Quinine, Strychynine, Piperine, Berberine, Taxol, Vinca alkoloids.
 - b) Glycosides: Digitoxin, Glycyrrhizin, Sennosides, Bacosides, Quercitin.
 - c) Steroids: Hecogenin, guggulosterone and withanolides
 - d) Coumarin: Umbelliferone.
 - e) Terpenoids: Cucurbitacins
- Drug discovery and development: History of herbs as source of drugs and drug discovery, the lead structure selection process, structure development, product discovery process and drug registration, Selection and optimization of lead compounds with suitable examples from the following source: artemesin, andrographolides. Clinical studies emphasising on phases of clinical trials, protocol design for lead molecules.
- 3 Extraction and Phytochemical studies: Recent advances in 12 extractions with emphasis on selection of method and choice of Solvent for extraction, successive and exhaustive extraction and other methods of extraction commonly used like microwave

assisted extraction, Methods of fractionation. Separation of phytoconstituents by latest CCCET, SCFE techniques including preparative HPLC and Flash column chromatography.

- 4 Phytochemical finger printing: HPTLC and LCMS/GCMS 12 applications in the characterization of herbal extracts. Structure elucidation of phytoconstituents.
- 5 Structure elucidation of the following compounds by spectroscopic techniques like UV, IR, MS, NMR (1H, 13C)

 Hrs
 - a. Carvone. Citral. Menthol
 - b. Luteolin. Kaempferol
 - c. Nicotine, Caffeine iv) Glycyrrhizin.

REFERENCES (Latest Editions of)

- 1. Organic chemistry by I.L. Finar Vol.II
- 2. Pharmacognosy by Trease and Evans, ELBS.
- 3. Pharmacognosy by Tylor and Brady.
- 4. Text book of Pharmacognosy by Wallis.
- 5. Clark's isolation and Identification of drugs by A.C. Mottal.
- 6. Plant Drug Analysis by Wagner & Bladt.
- 7. Wilson and Gisvolds text book of Organic Medicinnal and Pharmaceutical Chemistry by Deorge. R.F.
- 8. The Chemistry of Natural Products, Edited by R.H. Thomson, Springer International Edn. 1994.
- 9. Natural Products Chemistry Practical Manual by Anees A Siddiqui and SeemiSiddiqui
- 10. Organic Chemistry of Natural Products, Vol. 1&2. Gurdeep R Chatwal.
- 11. Chemistry of Natural Products- Vol. 1 onwards IWPAC.
- 12. Modem Methods of Plant Analysis- Peach & M.V. Tracey, Vol. I&II
- 13. Medicinal Natural products a biosynthetic approach, Dewick PM, John Wiley & Sons, Toronto, 1998.
- 14. Chemistry of Natural Products, Bhat SV, Nagasampagi BA, Meenakshi S, Narosa Publishing House, New Delhi.
- 15. Pharmacognosy & Phytochemistry of Medicinal Plants, 2nd edition, Bruneton J, Interceptt Ltd., New York, 1999.

INDUSTRIAL PHARMACOGNOSTICAL TECHNOLOGY (MPG 104T)

SCOPE

To understand the Industrial and commercial potential of drugs of natural origin, integrate traditional Indian systems of medicine with modern medicine and also to know regulatory and quality policy for the trade of herbals and drugs of natural origin.

OBJECTIVES

By the end of the course the student shall be able to know,

- the requirements for setting up the herbal/natural drug industry.
- the guidelines for quality of herbal/natural medicines and regulatory issues.
- the patenting/IPR of herbals/natural drugs and trade of raw and finished materials.

THEORY 60 Hrs

- 1. Herbal drug industry: Infrastructure of herbal drug industry 12 involved in production of standardized extracts and various Hrs dosage forms. Current challenges in upgrading and modernization οf herbal formulations. Entrepreneurship Development. Project selection. project report. knowledge, Capital venture, plant design, layout and construction. Pilot plant scale -up techniques, case studies of herbal extracts. Formulation and production management of herbals.
- 2 Regulatory requirements for setting herbal drug industry: 12 Global marketing management. Indian and international patent Hrs law as applicable herbal drugs and natural products. Export Import (EXIM) policy, TRIPS.

 Quality assurance in herbal/natural drug products.

 Concepts of TQM, GMP, GLP, ISO-9000.
- 3 Monographs of herbal drugs: General parameters of monographs of herbal drugs and comparative study in IP, USP, Ayurvedic Pharmacopoeia, Siddha and Unani Pharmacopoeia, American herbal pharmacopoeia, British herbal pharmacopoeia, WHO guidelines in quality assessment of herbal drugs.

- 4 Testing of natural products and drugs: Herbal medicines 12 clinical laboratory testing. Stability testing of natural products, Hrs protocols.
- Patents: Indian and international patent laws, proposed 12 amendments as applicable to herbal/natural products and Hrs process. Geographical indication, Copyright, Patentable subject maters, novelty, non obviousness, utility, enablement and best mode, procedure for Indian patent filing, patent processing, grant of patents, rights of patents, cases of patents, opposition and revocation of patents, patent search and literature, Controllers of patents.

- Herbal drug industry by R.D. Choudhary (1996), Eastern Publisher, New Delhi.
- 2. GMP for Botanicals Regulatory and Quality issues on Phytomedicine by Pulok K Mukharjee (2003), Ist Edition, Business horizons Robert Verpoorte. New Delhi.
- 3. Quality control of herbal drugs by Pulok K Mukarjee (2002), Business Horizons Pharmaceutical Publisher, New Delhi.
- 4. PDR for Herbal Medicines (2000), Medicinal Economic Company, New Jersey.
- 5. Indian Herbal Pharmacopoeia (2002), IDMA, Mumbai.
- 6. Text book of Pharmacognosy by C.K. Kokate, Purohit, Gokhlae (1996), Nirali Prakashan, New Delhi.
- 7. Text book of Pharmacognosy and Phytochemistry by Vinod D. Rangarl (2002), Part I & II, Career Publication, Nasik, India.
- 8. Plant drug analysis by H.Wagner and S.Bladt, Springer, Berlin.
- 9. Standardization of Botanicals. Testing and extraction methods of medicinal herbs by V. Rajpal (2004), Vol.I, Eastern Publisher, New Delhi.
- 10. Phytochemical Dictionary. Handbook of Bioactive Compounds from Plants by J.B.Harborne, (1999), IInd Edition, Taylor and Francis Ltd, UK.
- 11. Herbal Medicine. Expanded Commission E Monographs by M.Blumenthal, (2004), IST Edition,
- 12. Drug Formulation Manual by D.P.S.Kohli and D.H.Shah (1998), Eastern Publisher, New Delhi.

PHARMACOGNOSY PRACTICAL - I

(MPG I05P)

- 1. Analysis of Pharmacopoeial compounds of natural origin and their formulations by UV Vis spectrophotometer
- 2. Analysis of recorded spectra of simple phytoconstituents
- 3. Experiments based on Gas Chromatography
- 4. Estimation of sodium/potassium by flame photometry
- 5. Development of fingerprint of selected medicinal plant extracts commonly used in herbal drug industry viz. Ashwagandha, Tulsi, Bael, Amla, Ginger, Aloe, Vidang, Senna, Lawsonia by TLC/HPTLC method.
- 6. Methods of extraction
- 7. Phytochemical screening
- 8. Demonstration of HPLC- estimation of glycerrhizin
- 9. Monograph analysis of clove oil
- 10. Monograph analysis of castor oil.
- 11. Identification of bioactive constituents from plant extracts
- 12. Formulation of different dosage forms and their standardisation.

MEDICINAL PLANT BIOTECHNOLOGY (MPG 201T)

SCOPE

To explore the knowledge of Biotechnology and its application in the improvement of quality of medicinal plants

OBJECTIVES

Upon completion of the course, the student shall be able to,

- Know the process like genetic engineering in medicinal plants for higher yield of Phytopharmaceuticals.
- Use the biotechnological techniques for obtaining and improving the quality of natural products/medicinal plants

THEORY 60 Hrs

- Introduction to Plant biotechnology: Historical perspectives, 12 prospects for development of plant biotechnology as a source of Hrs medicinal agents. Applications in pharmacy and allied fields. Genetic and molecular biology as applied to pharmacognosy, study of DNA, RNA and protein replication, genetic code, regulation of gene expression, structure and complicity of genome, cell signaling, DNA recombinant technology.
- Different tissue culture techniques: Organogenesis and 15 embryogenesis, synthetic seed and monoclonal variation, Protoplast fusion, Hairy root multiple shoot cultures and their applications. Micro propagation of medicinal and aromatic plants. Sterilization methods involved in tissue culture, gene transfer in plants and their applications.
- Immobilisation techniques & Secondary Metabolite 15
 Production: Immobilization techniques of plant cell and its Hrs application on secondary metabolite Production. Cloning of plant cell: Different methods of cloning and its applications. Advantages and disadvantages of plant cell cloning. Secondary metabolism in tissue cultures with emphasis on production of medicinal agents. Precursors and elicitors on production of secondary metabolites.
- 4 Biotransformation and Transgenesis: Biotransformation, 13 bioreactors for pilot and large scale cultures of plant cells and Hrs retention of biosynthetic potential in cell culture. Transgenic

plants, methods used in gene identification, localization and sequencing of genes. Application of PCR in plant genome analysis.

5 Fermentation technology: Application of Fermentation 05 technology, Production of ergot alkaloids, single cell proteins, Hrs enzymes of pharmaceutical interest.

- 1. Plant tissue culture, Bhagwani, vol 5, Elsevier Publishers.
- 2. Plant cell and Tissue Culture (Lab. Manual), JRMM. Yeoman.
- 3. Elements in biotechnology by PK. Gupta, Rastogi Publications, New Delhi.
- 4. An introduction to plant tissue culture by MK. Razdan, Science Publishers.
- 5. Experiments in plant tissue culture by John HD and Lorin WR., Cambridge University Press.
- 6. Pharmaceutical biotechnology by SP. Vyas and VK. Dixit, CBS Publishers.
- 7. Plant cell and tissue culture by Jeffrey W. Pollard and John M Walker, Humana press.
- 8. Plant tissue culture by Dixon, Oxford Press, Washington DC, 1985
- 9. Plant tissue culture by Street.
- 10. Pharmacognosy by G. E. Trease and WC. Evans, Elsevier.
- 11. Biotechnology by Purohit and Mathur, Agro-Bio, 3rd revised edition.
- 12. Biotechnological applications to tissue culture by Shargool, Peter D, Shargoal, CKC Press.
- 13. Pharmacognosy by Varo E. Tyler, Lynn R. Brady and James E. Robberrt, That Tjen, NGO.
- 14. Plant Biotechnology, Ciddi Veerasham.

ADVANCED PHARMACOGNOSY - II (MPG 202T)

SCOPE

To know and understand the Adulteration and Deterioration that occurs in herbal/natural drugs and methods of detection of the same. Study of herbal remedies and their validations, including methods of screening

OBJECTIVES

Upon completion of the course, the student shall be able to know the,

- validation of herbal remedies
- methods of detection of adulteration and evaluation techniques for the herbal drugs
- methods of screening of herbals for various biological properties

THEORY 60 Hrs

- Herbal remedies Toxicity and Regulations: Herbals vs 12
 Conventional drugs, Efficacy of Herbal medicine products, Hrs Validation of herbal therapies, Pharmacodynamic and Pharmacokinetic issues.
- 2 Adulteration and Deterioration: Introduction, Types of 12 Adulteration/ Substitution of Herbal drugs, Causes and Measures of Adulteration, Sampling Procedures, Determination of Foreign Matter, DNA Finger printing techniques in identification of drugs of natural origin, detection of heavy metals, pesticide residues, phytotoxin, microbial contamination in herbs and their formulations.
- 3 Ethnobotany and Ethnopharmacology: Ethnobotany in herbal 12 drug evaluation, Impact of Ethnobotany in traditional medicine, Hrs New development in herbals, Bio-prospecting tools for drug discovery, Role of Ethnopharmacology in drug evaluation, Reverse Pharmacology.
- 4 Analytical Profiles of herbal drugs: Andrographis paniculata, 12 Boswellia serata, Coleus forskholii, Curcuma longa, Embelica Hrs officinalis, Psoralea corylifolia.
- Biological screening of herbal drugs: Introduction and Need for Phyto-Pharmacological Screening, New Strategies for evaluating

Natural Products, In vitro evaluation techniques for Antioxidants, Antimicrobial and Anticancer drugs. In vivo evaluation techniques for Anti-inflammatory, Antiulcer, Anticancer, Wound healing, Antidiabetic, Hepatoprotective, Cardio protective, Diuretics and Antifertility, Toxicity studies as per OECD guidelines.

- 1. Glimpses of Indian Ethano Pharmacology by P. Pushpangadam. Ulf Nyman. V.George Tropical Botanic Garden & Research Institute.
- 2. Natural products: A lab guide by Raphael Ikan, Academic Press.
- 3. Pharmacognosy G. E. Trease and W.C. Evans. WB. Saunders Edinburgh, New York.
- 4. Pharmacognosy-Tyler, Brady, Robbers, Lee & Fetiger.
- Modern Methods of Plant Analysis- Peach & M.V. Tracey, Vol. I & II, Springer Publishers.
- 6. Herbal Drug Industry by RD. Choudhary, Eastern Publishers, New Delhi.
- 7. Text book of Pharmacognosy by C.K.Kokate, Purohit, Ghokhale, Nirali Prakashan.
- 8. Text Book of Pharmacognosy by T.E. Wallis, J & A Churchill Ltd., London.
- 9. Quality control of herbal drugs by Pulok K Mukherjee, Business Horizons Pharmaceutical Publishers. New Delhi.
- 10. Indian Herbal Pharmacopoeia, IDMA, Mumbai.
- 11. Text book of Pharmacognosy and Phytochemistry by Vinod D. Rangarl, Part I & II, Career Publication, Nasik, India.
- 12. Plant drug analysis by H.Wagner and S.Bladt, 2nd edition, Springer, Berlin.
- 13. Standardization of Botanicals. Testing and extraction methods of medicinal herbs by V. Rajpal (2004), Vol.I, Eastern PublisherS, New Delhi.
- 14. Herbal Medicine. Expanded Commission E Monographs, M.Blumenthal.

INDIAN SYSTEMS OF MEDICINE (MPG 203T)

SCOPE

To make the students understand thoroughly the principles, preparations of medicines of various Indian systems of medicine like Ayurveda, Siddha, Homeopathy and Unani. Also focusing on clinical research of traditional medicines, quality assurance and challenges in monitoring the safety of herbal medicines.

OBJECTIVES

After completion of the course, student is able to

- To understand the basic principles of various Indian systems of medicine
- To know the clinical research of traditional medicines, Current Good Manufacturing Practice of Indian systems of medicine and their formulations.

THEORY 60 Hrs

- Fundamental concepts of Ayurveda, Siddha, Unani and 12
 Homoeopathy systems of medicine
 Different dosage forms of the ISM.
 Ayurveda: Ayurvedic Pharmacopoeia, Analysis of formulations
 - and bio crude drugs with references to: Identity, purity and quality. Siddha: Gunapadam (Siddha Pharmacology), raw drugs/Dhatu/Jeevam in Siddha system of medicine, Purification process (Suddhi).
- Naturopathy, Yoga and Aromatherapy practices
 a) Naturopathy Introduction, basic principles and treatment Hrs modalities.
 - b) Yoga Introduction and Streams of Yoga. Asanas, Pranayama, Meditations and Relaxation techniques.
 - c) Aromatherapy Introduction, aroma oils for common problems, carrier oils.
- 3 Formulation development of various systems of medicine
 Salient features of the techniques of preparation of some of the important class of Formulations as per Ayurveda, Siddha, Homeopathy and Unani Pharmacopoeia and texts.
 Standardization,

Shelf life and Stability studies of ISM formulations.

4 Schedule T - Good Manufacturing Practice of Indian systems of medicine

12 Hrs

12

Hrs

Components of GMP (Schedule - T) and its objectives, Infrastructural requirements, working space, storage area, machinery and equipments, standard operating procedures, health and hygiene, documentation and records.

Quality assurance in ISM formulation industry - GAP, GMP and GLP. Preparation of documents for new drug application and export registration.

Challenges in monitoring the safety of herbal medicines: Regulation, quality assurance and control, National/Regional Pharmacopoeias.

5 TKDL, Geographical indication Bill, Government bills in AYUSH, ISM, CCRAS, CCRS, CCRH, CCRU

- 1. Ayurvedic Pharmacopoeia, The Controller of Publications, Civil Lines, Govt. of India. New Delhi.
- 2. Hand Book on Ayurvedic Medicines, H. Panda, National Institute of Industrial Research, New Delhi.
- 3. Ayurvedic System of Medicine, Kaviraj Nagendranath Sengupata, Sri Satguru Publications, New Delhi.
- 4. Ayurvedic Pharmacopoeia. Formulary of Ayurvedic Medicines, IMCOPS, Chennai.
- 5. Homeopathic Pharmacopoeia. Formulary of Homeopathic Medicines, IMCOPS, Chennai.
- 6. Homeopathic Pharmacy: An introduction & Hand book, Steven B. Kayne, Churchill Livingstone, New York.
- 7. Indian Herbal Pharmacopoeia, IDMA, Mumbai.
- 8. British Herbal Pharmacopoeia, bRITISH Herbal Medicine Association, UK.
- 9. GMP for Botanicals Regulatory and Quality issues on Phytomedicine, Pulok K Mukharjee, Business Horizons, New Delhi.
- 10. Indian System of Medicine and Homeopathy in India, Planning and Evaluation Cell, Govt. of India, New Delhi.
- 11. Essential of Food and Nutrition, Swaminathan, Bappco, Bangalore.
- 12. Clinical Dietitics and Nutrition, F.P. Antia, Oxford University Press, Delhi.
- 13. Yoga The Science of Holistic Living by V.K.Yoga, Vivekananda Yoga Prakashna Publishing, Bangalore.

HERBAL COSMETICS (MPG 204T)

SCOPE

This subject deals with the study of preparation and standardization of herbal/natural cosmetics. This subject gives emphasis to various national and international standards prescribed regarding herbal cosmeceuticals.

OBJECTIVES

After completion of the course, student shall be able to,

- understand the basic principles of various herbal/natural cosmetic preparations
- current Good Manufacturing Practices of herbal/natural cosmetics as per the regulatory authorities

THEORY 60 Hrs

- Introduction: Herbal/natural cosmetics, Classification & 12
 Economic aspects.
 Hrs
 Regulatory Provisions relation to manufacture of cosmetics: License, GMP, offences & Penalties, Import & Export of Herbal/natural cosmetics, Industries involved in the production of Herbal/natural cosmetics.
- 2 Commonly used herbal cosmetics, raw materials, preservatives, 12 surfactants, humectants, oils, colors, and some functional herbs, preformulation studies, compatibility studies, possible interactions between chemicals and herbs, design of herbal cosmetic formulation.
- Herbal Cosmetics: Physiology and chemistry of skin and 12 pigmentation, hairs, scalp, lips and nail, Cleansing cream, Hrs Lotions, Face powders, Face packs, Lipsticks, Bath products, soaps and baby product, Preparation and standardisation of the following:

 Tonic, Bleaches, Dentifrices and Mouth washes & Tooth Pastes, Cosmetics for Nails
- 4 Cosmeceuticals of herbal and natural origin: Hair growth 12 formulations, Shampoos, Conditioners, Colorants & hair oils, Hrs Fairness formulations, vanishing & foundation creams, anti-sun burn preparations, moisturizing creams, deodorants.

5 Analysis of Cosmetics, Toxicity screening and test methods: 12 Quality control and toxicity studies as per Drug and Cosmetics Hrs Act.

- Panda H. Herbal Cosmetics (Hand book), Asia Pacific Business Press Inc, New Delhi.
- Thomson EG. Modern Cosmetics, Universal Publishing Corporation, Mumbai.
- 3. P.P.Sharma. Cosmetics Formulation, Manufacturing & Quality Control, Vandana Publications, New Delhi.
- 4. Supriya K B. Handbook of Aromatic Plants, Pointer Publishers, Jaipur.
- 5. Skaria P. Aromatic Plants (Horticulture Science Series), New India Publishing Agency, New Delhi.
- 6. Kathi Keville and Mindy Green. Aromatheraphy (A Complete Guide to the Healing Art), Sri Satguru Publications, New Delhi.
- 7. Chattopadhyay PK. Herbal Cosmetics & Ayurvedic Medicines (EOU), National Institute of Industrial Research, Delhi.
- 8. Balsam MS & Edward Sagarin. Cosmetics Science and Technology, Wiley Interscience, New York.

HERBAL COSMETICS PRACTICALS (MPG 205P)

- 1. Isolation of nucleic acid from cauliflower heads
- 2. Isolation of RNA from yeast
- 3. Quantitative estimation of DNA
- 4. Immobilization technique
- 5. Establishment of callus culture
- 6. Establishment of suspension culture
- 7. Estimation of aldehyde contents of volatile oils
- 8. Estimation of total phenolic content in herbal raw materials
- 9. Estimation of total alkaloid content in herbal raw materials
- 10. Estimation of total flavonoid content in herbal raw materials
- 11. Preparation and standardization of various simple dosage forms from Ayurvedic, Siddha, Homoeopathy and Unani formulary
- 12. Preparation of certain Aromatherapy formulations
- 13. Preparation of herbal cosmetic formulation such as lip balm, lipstick, facial cream, herbal hair and nail care products
- 14. Evaluation of herbal tablets and capsules
- 15. Preparation of sunscreen, UV protection cream, skin care formulations.
- 16. Formulation & standardization of herbal cough syrup.

Semester III MRM 301T - Research Methodology & Biostatistics

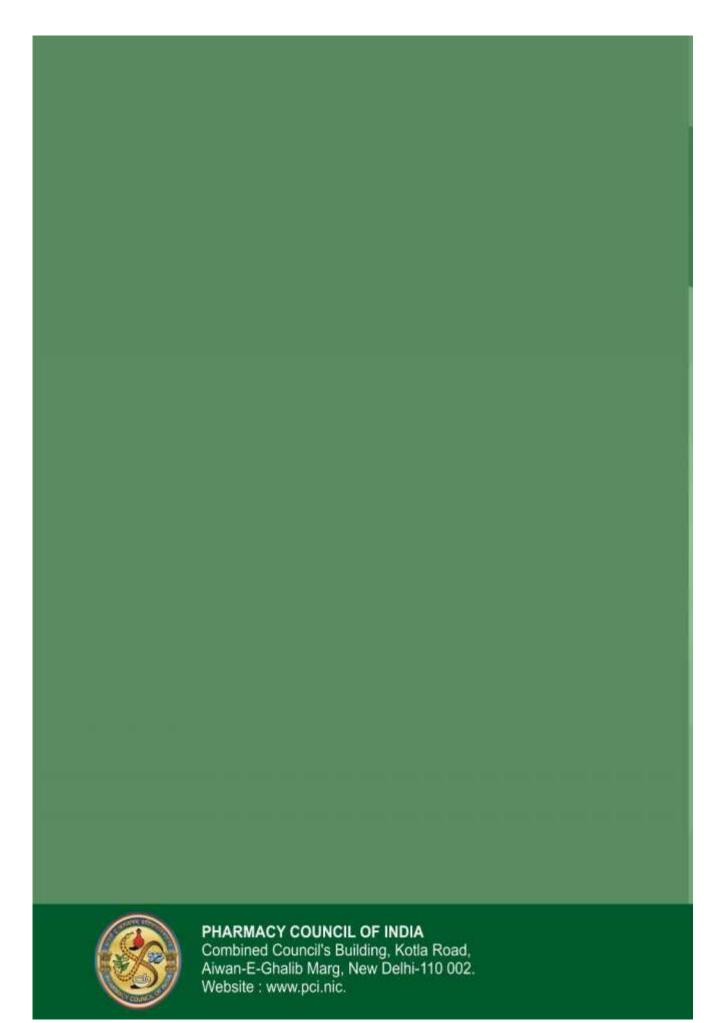
UNIT - I

General Research Methodology: Research, objective, requirements, practical difficulties, review of literature, study design, types of studies, strategies to eliminate errors/bias, controls, randomization, crossover design, placebo, blinding techniques.

UNIT - II

Biostatistics: Definition, application, sample size, importance of sample size, factors influencing sample size, dropouts, statistical tests of significance, type of significance tests, parametric tests(students "t" test, ANOVA, Correlation coefficient, regression), non-parametric tests (wilcoxan rank tests, analysis of variance, correlation, chi square test), null hypothesis, P values, degree of freedom, interpretation of P values.

UNIT - III


Medical Research: History, values in medical ethics, autonomy, beneficence, non-maleficence, double effect, conflicts between autonomy and beneficence/non-maleficence, euthanasia, informed consent, confidentiality, criticisms of orthodox medical ethics, importance of communication, control resolution, guidelines, ethics committees, cultural concerns, truth telling, online business practices, conflicts of interest, referral, vendor relationships, treatment of family members, sexual relationships, fatality.

UNIT - IV

CPCSEA guidelines for laboratory animal facility: Goals, veterinary care, quarantine, surveillance, diagnosis, treatment and control of disease, personal hygiene, location of animal facilities to laboratories, anesthesia, euthanasia, physical facilities, environment, animal husbandry, record keeping, SOPs, personnel and training, transport of lab animals.

UNIT - V

Declaration of Helsinki: History, introduction, basic principles for all medical research, and additional principles for medical research combined with medical care.

